HERMITE-HADAMARD TYPE INEQUALITIES FOR THE PRODUCT OF (alpha, m)-CONVEX FUNCTIONS

被引:4
|
作者
Yin, Hong-Ping [1 ]
Qi, Feng [2 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[2] Tianjin Polytech Univ, Coll Sci, Dept Math, Tianjin 300160, Peoples R China
关键词
Hermite-Hadamard type inequality; (alpha; m)-convex function; product; Holder's integral inequality;
D O I
10.35834/mjms/1449161369
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the authors establish some Hermite-Hadamard type inequalities for the product of two (alpha, m)-convex functions.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 50 条
  • [1] Hermite-Hadamard type inequalities for the product of (α, m)-convex functions
    Yin, Hong-Ping
    Qi, Feng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (03): : 231 - 236
  • [2] Hermite-Hadamard Type Inequalities for (α, m)-Geometrically Convex Functions
    Onalan, Havva Kavurmaci
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [3] Hermite-Hadamard type inequalities for harmonically (α, m)-convex functions
    Iscan, Imdat
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (02): : 381 - 390
  • [4] Hermite-Hadamard type inequalities for m-convex and (α, m)-convex functions
    Ozcan, Serap
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01):
  • [5] On the Fractional Hermite-Hadamard Type Inequalities for (α, m)-Logarithmically Convex Functions
    Wang, JinRong
    Liao, Yumei
    Deng, JianHua
    FILOMAT, 2015, 29 (07) : 1565 - 1580
  • [6] On Some Inequalities of Hermite-Hadamard Type for M-Convex Functions
    Eftekhari, Noha
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 (02): : 221 - 238
  • [7] Hermite-Hadamard type inequalities for the m- and (α, m)-geometrically convex functions
    Xi, Bo-Yan
    Bai, Rui-Fang
    Qi, Feng
    AEQUATIONES MATHEMATICAE, 2012, 84 (03) : 261 - 269
  • [8] ON SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR CONVEX FUNCTIONS
    Sarikaya, Mehmet Zeki
    Avci, Merve
    Kavurmaci, Havva
    ICMS: INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE, 2010, 1309 : 852 - +
  • [9] Hermite-Hadamard type inequalities for the m- and (α, m)-logarithmically convex functions
    Bai, Rui-Fang
    Qi, Feng
    Xi, Bo-Yan
    FILOMAT, 2013, 27 (01) : 1 - 7
  • [10] Hermite-Hadamard type inequalities for harmonically convex functions
    Iscan, Iindat
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (06): : 935 - 942