SURFACE ROUGHENING WITH QUENCHED DISORDER IN d-DIMENSIONS

被引:10
|
作者
Buldyrev, Sergey V. [1 ,2 ]
Havlin, Shlomo [1 ,2 ,3 ]
Kertesz, Janos [4 ]
Shehter, Arkady [3 ]
Stanley, H. Eugene [1 ,2 ]
机构
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Bar Ilan Univ, Dept Phys, Ramat Gan, Israel
[4] Tech Univ Budapest, Inst Phys, H-1521 Budapest 11, Hungary
关键词
D O I
10.1142/S0218348X9300085X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We review recent numerical simulations of several models of interface growth in d-dimensional media with quenched disorder. These models belong to the universality class of anisotropic diode-resistor percolation networks. The values of the roughness exponent alpha = 0.63 0.01 (d =1+1) and alpha = 0.48 +/- 0.02 (d = 2 + 1) are in good agreement with our recent experiments. We study also the diode-resistor percolation on a Cayley tree. We find that P-infinity similar to exp(-A/root p(c)-p), thus suggesting that the critical exponent for P-infinity similar to (p(c)-p)(beta p) , beta(p) = infinity and that the upper critical dimension in this problem is d = d(c) = infinity. Other critical exponents on the Cayley tree are: tau = 3, v(parallel to) = nu(perpendicular to) = gamma = sigma = 0. The exponents related to roughness are: alpha = beta = 0, z = 2.
引用
收藏
页码:827 / 839
页数:13
相关论文
共 50 条
  • [41] PERTURBATION AND DENSITY-GRADIENT EXPANSIONS IN D-DIMENSIONS
    HOLAS, A
    MARCH, NH
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1994, 69 (05): : 787 - 798
  • [42] A PSEUDOCLASSICAL MODEL FOR THE MASSIVE DIRAC PARTICLE IN D-DIMENSIONS
    CORTES, JL
    PLYUSHCHAY, MS
    VELAZQUEZ, L
    PHYSICS LETTERS B, 1993, 306 (1-2) : 34 - 40
  • [43] REPRESENTING GEOMETRIC STRUCTURES IN D-DIMENSIONS - TOPOLOGY AND ORDER
    BRISSON, E
    DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 9 (04) : 387 - 426
  • [44] POINT SET PATTERN-MATCHING IN D-DIMENSIONS
    DEREZENDE, PJ
    LEE, DT
    ALGORITHMICA, 1995, 13 (04) : 387 - 404
  • [45] SOLUBLE FREE-FERMION MODEL IN D-DIMENSIONS
    WU, FY
    HUANG, HY
    PHYSICAL REVIEW E, 1995, 51 (02): : 889 - 895
  • [46] POLARON GROUND-STATE ENERGY IN D-DIMENSIONS
    GANBOLD, G
    EFIMOV, GV
    PHYSICAL REVIEW B, 1994, 50 (06) : 3733 - 3745
  • [47] PSEUDOCLASSICAL DESCRIPTION OF THE MASSIVE SPINNING PARTICLE IN D-DIMENSIONS
    PLYUSHCHAY, MS
    MODERN PHYSICS LETTERS A, 1993, 8 (10) : 937 - 945
  • [48] LOCALIZATION FOR SOME CONTINUOUS, RANDOM HAMILTONIANS IN D-DIMENSIONS
    COMBES, JM
    HISLOP, PD
    JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 124 (01) : 149 - 180
  • [49] MULTIPLE TUNNELINGS IN D-DIMENSIONS - A QUANTUM PARTICLE IN A HIERARCHICAL POTENTIAL
    JONALASINIO, G
    MARTINELLI, F
    SCOPPOLA, E
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1985, 42 (01): : 73 - 108
  • [50] Kinetic roughening of a soft dewetting line under quenched disorder: A numerical study
    Tyukodi, B.
    Brechet, Y.
    Neda, Z.
    PHYSICAL REVIEW E, 2014, 90 (05):