SURFACE ROUGHENING WITH QUENCHED DISORDER IN d-DIMENSIONS

被引:10
|
作者
Buldyrev, Sergey V. [1 ,2 ]
Havlin, Shlomo [1 ,2 ,3 ]
Kertesz, Janos [4 ]
Shehter, Arkady [3 ]
Stanley, H. Eugene [1 ,2 ]
机构
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Bar Ilan Univ, Dept Phys, Ramat Gan, Israel
[4] Tech Univ Budapest, Inst Phys, H-1521 Budapest 11, Hungary
关键词
D O I
10.1142/S0218348X9300085X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We review recent numerical simulations of several models of interface growth in d-dimensional media with quenched disorder. These models belong to the universality class of anisotropic diode-resistor percolation networks. The values of the roughness exponent alpha = 0.63 0.01 (d =1+1) and alpha = 0.48 +/- 0.02 (d = 2 + 1) are in good agreement with our recent experiments. We study also the diode-resistor percolation on a Cayley tree. We find that P-infinity similar to exp(-A/root p(c)-p), thus suggesting that the critical exponent for P-infinity similar to (p(c)-p)(beta p) , beta(p) = infinity and that the upper critical dimension in this problem is d = d(c) = infinity. Other critical exponents on the Cayley tree are: tau = 3, v(parallel to) = nu(perpendicular to) = gamma = sigma = 0. The exponents related to roughness are: alpha = beta = 0, z = 2.
引用
收藏
页码:827 / 839
页数:13
相关论文
共 50 条
  • [31] Perturbative c-theorem in d-dimensions
    Yonekura, Kazuya
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (04):
  • [32] MOTION IN A RANDOM GYROTROPIC ENVIRONMENT IN D-DIMENSIONS
    ORTUNO, M
    GUNN, JMF
    CHICON, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (12): : 4047 - 4051
  • [33] EXACT SOLUTION OF A VERTEX MODEL IN D-DIMENSIONS
    WU, FY
    HUANG, HY
    LETTERS IN MATHEMATICAL PHYSICS, 1993, 29 (03) : 205 - 213
  • [34] A new numerical Fourier transform in d-dimensions
    Beaudoin, N
    Beauchemin, SS
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (05) : 1422 - 1430
  • [35] MODEL FOR RELATIVISTIC BOSE SYSTEMS IN D-DIMENSIONS
    DIXIT, VV
    MILLER, DE
    PHYSICAL REVIEW A, 1983, 28 (03): : 1709 - 1716
  • [36] EQUILIBRIUM DIMENSIONS OF POLYMERS IN QUENCHED DISORDER
    CHERAYIL, BJ
    JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (10): : 6246 - 6254
  • [37] Some result of d-dimensions Brown motion
    Peng, X.-Y.
    Ding, B.-W.
    Zhou, R.-Q.
    Xiangtan Daxue Ziran Kexue Xuebao, 2001, 23 (01): : 17 - 19
  • [38] STOCHASTIC QUANTUM-GRAVITY IN D-DIMENSIONS
    RUMPF, H
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1993, (111): : 63 - 81
  • [39] The compressibility of rotating black holes in D-dimensions
    Dolan, Brian P.
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (03)
  • [40] A SPATIAL INDEX FOR CONVEX SIMPLICIAL COMPLEXES IN D-DIMENSIONS
    FERRUCCI, V
    VANECEK, G
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 525 : 361 - 380