SURFACE ROUGHENING WITH QUENCHED DISORDER IN d-DIMENSIONS
被引:10
|
作者:
Buldyrev, Sergey V.
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
Boston Univ, Dept Phys, Boston, MA 02215 USABoston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
Buldyrev, Sergey V.
[1
,2
]
Havlin, Shlomo
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
Boston Univ, Dept Phys, Boston, MA 02215 USA
Bar Ilan Univ, Dept Phys, Ramat Gan, IsraelBoston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
Havlin, Shlomo
[1
,2
,3
]
Kertesz, Janos
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Budapest, Inst Phys, H-1521 Budapest 11, HungaryBoston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
Kertesz, Janos
[4
]
Shehter, Arkady
论文数: 0引用数: 0
h-index: 0
机构:
Bar Ilan Univ, Dept Phys, Ramat Gan, IsraelBoston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
Shehter, Arkady
[3
]
Stanley, H. Eugene
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
Boston Univ, Dept Phys, Boston, MA 02215 USABoston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
Stanley, H. Eugene
[1
,2
]
机构:
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Bar Ilan Univ, Dept Phys, Ramat Gan, Israel
[4] Tech Univ Budapest, Inst Phys, H-1521 Budapest 11, Hungary
We review recent numerical simulations of several models of interface growth in d-dimensional media with quenched disorder. These models belong to the universality class of anisotropic diode-resistor percolation networks. The values of the roughness exponent alpha = 0.63 0.01 (d =1+1) and alpha = 0.48 +/- 0.02 (d = 2 + 1) are in good agreement with our recent experiments. We study also the diode-resistor percolation on a Cayley tree. We find that P-infinity similar to exp(-A/root p(c)-p), thus suggesting that the critical exponent for P-infinity similar to (p(c)-p)(beta p) , beta(p) = infinity and that the upper critical dimension in this problem is d = d(c) = infinity. Other critical exponents on the Cayley tree are: tau = 3, v(parallel to) = nu(perpendicular to) = gamma = sigma = 0. The exponents related to roughness are: alpha = beta = 0, z = 2.