SURFACE ROUGHENING WITH QUENCHED DISORDER IN d-DIMENSIONS

被引:10
|
作者
Buldyrev, Sergey V. [1 ,2 ]
Havlin, Shlomo [1 ,2 ,3 ]
Kertesz, Janos [4 ]
Shehter, Arkady [3 ]
Stanley, H. Eugene [1 ,2 ]
机构
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Bar Ilan Univ, Dept Phys, Ramat Gan, Israel
[4] Tech Univ Budapest, Inst Phys, H-1521 Budapest 11, Hungary
关键词
D O I
10.1142/S0218348X9300085X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We review recent numerical simulations of several models of interface growth in d-dimensional media with quenched disorder. These models belong to the universality class of anisotropic diode-resistor percolation networks. The values of the roughness exponent alpha = 0.63 0.01 (d =1+1) and alpha = 0.48 +/- 0.02 (d = 2 + 1) are in good agreement with our recent experiments. We study also the diode-resistor percolation on a Cayley tree. We find that P-infinity similar to exp(-A/root p(c)-p), thus suggesting that the critical exponent for P-infinity similar to (p(c)-p)(beta p) , beta(p) = infinity and that the upper critical dimension in this problem is d = d(c) = infinity. Other critical exponents on the Cayley tree are: tau = 3, v(parallel to) = nu(perpendicular to) = gamma = sigma = 0. The exponents related to roughness are: alpha = beta = 0, z = 2.
引用
收藏
页码:827 / 839
页数:13
相关论文
共 50 条
  • [21] ANOMALIES AND FERMION MASSES IN D-DIMENSIONS
    PRESKILL, J
    FRAMPTON, PH
    VANDAM, H
    PHYSICS LETTERS B, 1983, 124 (3-4) : 209 - 211
  • [22] Gravity with Higher Derivatives in D-Dimensions
    Rubin, Sergey G.
    Popov, Arkadiy
    Petriakova, Polina M.
    UNIVERSE, 2020, 6 (10)
  • [23] Point set pattern matching in d-dimensions
    de, Rezende, P.J.
    Lee, D.T.
    Algorithmica (New York), 1995, 13 (04):
  • [24] VERTEX MODEL IN D-DIMENSIONS - AN EXACT RESULT
    BHATTACHARJEE, SM
    EUROPHYSICS LETTERS, 1991, 15 (08): : 815 - 820
  • [25] Perturbative c-theorem in d-dimensions
    Kazuya Yonekura
    Journal of High Energy Physics, 2013
  • [26] CONVEX HULL OF BROWNIAN MOTION IN D-DIMENSIONS
    KINNEY, JR
    ISRAEL JOURNAL OF MATHEMATICS, 1966, 4 (02) : 139 - &
  • [27] RECTANGULAR POINT LOCATION IN D-DIMENSIONS WITH APPLICATIONS
    EDELSBRUNNER, H
    HARING, G
    HILBERT, D
    COMPUTER JOURNAL, 1986, 29 (01): : 76 - 82
  • [28] Mapping properties for oscillatory integrals in d-dimensions
    Sampson, G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (01) : 196 - 205
  • [29] Accurate numerical Fourier transform in d-dimensions
    Beaudoin, N
    Beauchemin, SS
    SYMBOLIC AND NUMERICAL SCIENTIFIC COMPUTATION, 2003, 2630 : 266 - 278
  • [30] Multipole expansion at the level of the action in d-dimensions
    Amalberti, Loris
    Larrouturou, Francois
    Yang, Zixin
    PHYSICAL REVIEW D, 2024, 109 (10)