Goldie absolute direct summand rings and modules

被引:2
|
作者
Truong Cong Quynh [1 ]
Sahinkaya, Serap [2 ]
机构
[1] Danang Univ, Dept Math, 459 Ton Duc Thang, Danang City, Vietnam
[2] Gebze Tech Univ, Fac Sci, Dept Math, Kocaeli, Turkey
来源
关键词
Goldie extending modules; ADS modules; CS modules;
D O I
10.24193/subbmath.2018.4.02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we introduce and study Goldie ADS modules and rings, which subsume two generalizations of Goldie extending modules due to Akalan et al. [3] and ADS-modules due to Alahmadi et al. [7]. A module M will be called a Goldie ADS module if for every decomposition M=S circle plus T of M and every complement T' of S, there exists a submodule D of M such that T'beta D and M = S circle plus D. Various properties concerning direct sums of Goldie ADS modules are established.
引用
收藏
页码:437 / 445
页数:9
相关论文
共 50 条
  • [41] MAXIMAL GOLDIE SUBRINGS OF SEMIPRIME GOLDIE RINGS WHICH ARE NOT PRIME
    STINEBRI.RP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 404 - &
  • [42] ON PRIME AND SEMIPRIME GOLDIE MODULES
    Nguyen Van Sanh
    Asawasamrit, S.
    Ahmed, K. F. U.
    Le Phuong Thao
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2011, 4 (02) : 321 - 334
  • [43] Principally Goldie*-Lifting Modules
    A. T. Güroğlu
    E. T. Meriç
    Ukrainian Mathematical Journal, 2018, 70 : 1042 - 1051
  • [44] GOLDIE-SUPPLEMENTED MODULES
    Birkenmeier, G. F.
    Mutlu, F. Takil
    Nebiyev, C.
    Sokmez, N.
    Tercan, A.
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52A : 41 - 52
  • [45] Totally Goldie*-Supplemented Modules
    Guroglu, Ayse Tugba
    MATHEMATICS, 2023, 11 (21)
  • [46] Goldie dimensions of quotient modules
    Dauns, J
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2001, 71 : 11 - 19
  • [47] MODULES OF FINITE GOLDIE DIMENSION
    ZAND, H
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A74 - A74
  • [48] On the Goldie dimension of injective modules
    Pardo, JLG
    Asensio, PAG
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1998, 41 : 265 - 275
  • [49] Principally Goldie*-Lifting Modules
    Guroglu, A. T.
    Meric, E. T.
    UKRAINIAN MATHEMATICAL JOURNAL, 2018, 70 (07) : 1042 - 1051
  • [50] Partial Skew Polynomial Rings and Goldie Rings
    Cortes, Wagner
    Ferrero, Miguel
    Marubayashi, Hidetoshi
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (11) : 4284 - 4295