Goldie absolute direct summand rings and modules

被引:2
|
作者
Truong Cong Quynh [1 ]
Sahinkaya, Serap [2 ]
机构
[1] Danang Univ, Dept Math, 459 Ton Duc Thang, Danang City, Vietnam
[2] Gebze Tech Univ, Fac Sci, Dept Math, Kocaeli, Turkey
来源
关键词
Goldie extending modules; ADS modules; CS modules;
D O I
10.24193/subbmath.2018.4.02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we introduce and study Goldie ADS modules and rings, which subsume two generalizations of Goldie extending modules due to Akalan et al. [3] and ADS-modules due to Alahmadi et al. [7]. A module M will be called a Goldie ADS module if for every decomposition M=S circle plus T of M and every complement T' of S, there exists a submodule D of M such that T'beta D and M = S circle plus D. Various properties concerning direct sums of Goldie ADS modules are established.
引用
收藏
页码:437 / 445
页数:9
相关论文
共 50 条
  • [21] SELF-INJECTIVE RINGS AND MINIMAL DIRECT SUMMAND CONTAINING NILPOTENTS
    BIRKENMEIER, GF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A76 - A76
  • [22] SELF-INJECTIVE RINGS AND MINIMAL DIRECT SUMMAND CONTAINING NILPOTENTS
    BIRKENMEIER, GF
    COMMUNICATIONS IN ALGEBRA, 1976, 4 (08) : 705 - 721
  • [23] MODULES WITH THE SUMMAND INTERSECTION PROPERTY
    HAUSEN, J
    COMMUNICATIONS IN ALGEBRA, 1989, 17 (01) : 135 - 148
  • [24] MODULES WITH THE SUMMAND INTERSECTION PROPERTY
    WILSON, GV
    COMMUNICATIONS IN ALGEBRA, 1986, 14 (01) : 21 - 38
  • [25] ON COMMUTATIVE RINGS OVER WHICH SINGULAR SUBMODULE IS A DIRECT SUMMAND FOR EVERY MODULE
    CATEFORIS, VC
    SANDOMIE.FL
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (02) : 289 - +
  • [26] ON SEMIPRIME GOLDIE MODULES
    Castro Perez, Jaime
    Medina Barcenas, Mauricio
    Rios Montes, Jose
    Zaldivar Corichi, Angel
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (11) : 4749 - 4768
  • [27] GOLDIE EXTENDING MODULES
    Akalan, Evrim
    Birkenmeier, Gary F.
    Tercan, Adnan
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (02) : 663 - 683
  • [28] On the structure of Goldie modules
    Castro Perez, Jaime
    Medina Barcenas, Mauricio
    Rios Montes, Jose
    Zaldivar, Angel
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (07) : 3112 - 3126
  • [29] Some rings for which the cosingular submodule of every module is a direct summand
    Keskin Tutuncu, Derya
    Orhan Ertas, Nil
    Smith, Patrick F.
    Tribak, Rachid
    TURKISH JOURNAL OF MATHEMATICS, 2014, 38 (04) : 649 - 657
  • [30] GOLDIE EXTENDING RINGS
    Akalan, Evrim
    Birkenmeier, Gary F.
    Tercan, Adnan
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (02) : 423 - 428