On the Expansion of Fibonacci and Lucas Polynomials

被引:0
|
作者
Prodinger, Helmut [1 ]
机构
[1] Univ Stellenbosch, Dept Math, ZA-7602 Stellenbosch, South Africa
关键词
Fibonacci polynomials; Lucas polynomials; generating functions; q-analogues;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Belbachir and Bencherif have expanded Fibonacci and Lucas polynomials using bases of Fibonacci-and Lucas-like polynomials. Here, we provide simplified proofs for the expansion formulae that in essence a computer can do. Furthermore, for 2 of the 5 instances, we find q-analogues.
引用
下载
收藏
页数:5
相关论文
共 50 条
  • [31] On Some Properties of Bivariate Fibonacci and Lucas Polynomials
    Belbachir, Hacene
    Bencherif, Farid
    JOURNAL OF INTEGER SEQUENCES, 2008, 11 (02)
  • [32] SUBSEQUENCES OF FIBONACCI AND LUCAS POLYNOMIALS WITH GEOMETRIC SUBSCRIPTS
    Chu, Wenchang
    Li, Nadia N.
    FIBONACCI QUARTERLY, 2012, 50 (01): : 27 - 35
  • [33] Fibonacci and Lucas Polynomials in n-gon
    Kuloglu, Bahar
    Ozkan, Engin
    Marin, Marin
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (02): : 127 - 140
  • [34] A Note on Fibonacci & Lucas and Bernoulli & Euler Polynomials
    Pita Ruiz Velasco, Claudio de Jesus
    JOURNAL OF INTEGER SEQUENCES, 2012, 15 (02)
  • [35] On the finite reciprocal sums of Fibonacci and Lucas polynomials
    Dutta, Utkal Keshari
    Ray, Prasanta Kumar
    AIMS MATHEMATICS, 2019, 4 (06): : 1569 - 1581
  • [36] Some new results for the -Fibonacci and Lucas polynomials
    Wang, Jingzhe
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [37] First derivative sequences of extended Fibonacci and Lucas polynomials
    Filipponi, P
    Horadam, AF
    APPLICATIONS OF FIBONACCI NUMBERS, VOL 7, 1998, : 115 - 128
  • [38] On Properties of Bi-Periodic Fibonacci and Lucas Polynomials
    Yilmaz, Nazmiye
    Coskun, Arzu
    Taskara, Necati
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [39] On the irreducibility of Fibonacci and Lucas polynomials over finite fields
    Kitayama, Hidetaka
    Shiomi, Daisuke
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 48 : 420 - 429
  • [40] REMAINDER FORMULAS INVOLVING GENERALIZED FIBONACCI AND LUCAS POLYNOMIALS
    GLASSON, AR
    FIBONACCI QUARTERLY, 1995, 33 (03): : 268 - 272