On Properties of Bi-Periodic Fibonacci and Lucas Polynomials

被引:5
|
作者
Yilmaz, Nazmiye [1 ]
Coskun, Arzu [1 ]
Taskara, Necati [1 ]
机构
[1] Selcuk Univ, Sci Fac, Dept Math, TR-42250 Konya, Turkey
关键词
Generating functions; bi-periodic Fibonacci polynomials; bi-periodic Lucas polynomials; GENERALIZED FIBONACCI;
D O I
10.1063/1.4992478
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define bi-periodic Fibonacci and Lucas polynomials and investigate properties of these polynomials which generalized of bi-periodic Fibonacci and Lucas numbers. We also obtain some new algebraic properties on these numbers and polynomials.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Some identities of the generalized bi-periodic Fibonacci and Lucas polynomials
    Du, Tingting
    Wu, Zhengang
    AIMS MATHEMATICS, 2024, 9 (03): : 7492 - 7510
  • [2] On the power sums problem of bi-periodic Fibonacci and Lucas polynomials
    Du, Tingting
    Wang, Li
    AIMS MATHEMATICS, 2024, 9 (04): : 7810 - 7818
  • [3] Some identities involving the bi-periodic Fibonacci and Lucas polynomials
    Du, Tingting
    Wu, Zhengang
    AIMS MATHEMATICS, 2023, 8 (03): : 5838 - 5846
  • [4] Gaussian bi-periodic Fibonacci and Gaussian bi-periodic Lucas Sequences
    Uygun, Sukran
    SIGMAE, 2021, 10 (01): : 1 - 11
  • [5] ON THE GENERALIZED BI-PERIODIC FIBONACCI AND LUCAS QUATERNIONS
    Choo, Younseok
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (02) : 807 - 821
  • [6] A note on bi-periodic Fibonacci and Lucas quaternions
    Tan, Elif
    Yilmaz, Semih
    Sahin, Murat
    CHAOS SOLITONS & FRACTALS, 2016, 85 : 138 - 142
  • [7] Some basic properties of the generalized bi-periodic Fibonacci and Lucas sequences
    Elif Tan
    Ho-Hon Leung
    Advances in Difference Equations, 2020
  • [8] SPLIT COMPLEX BI-PERIODIC FIBONACCI AND LUCAS NUMBERS
    Yilmaz, Nazmiye
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (01): : 153 - 164
  • [9] Some basic properties of the generalized bi-periodic Fibonacci and Lucas sequences
    Tan, Elif
    Leung, Ho-Hon
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [10] A note on the bi-periodic Fibonacci and Lucas matrix sequences
    Coskun, Arzu
    Taskara, Necati
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 320 : 400 - 406