On Properties of Bi-Periodic Fibonacci and Lucas Polynomials

被引:5
|
作者
Yilmaz, Nazmiye [1 ]
Coskun, Arzu [1 ]
Taskara, Necati [1 ]
机构
[1] Selcuk Univ, Sci Fac, Dept Math, TR-42250 Konya, Turkey
关键词
Generating functions; bi-periodic Fibonacci polynomials; bi-periodic Lucas polynomials; GENERALIZED FIBONACCI;
D O I
10.1063/1.4992478
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define bi-periodic Fibonacci and Lucas polynomials and investigate properties of these polynomials which generalized of bi-periodic Fibonacci and Lucas numbers. We also obtain some new algebraic properties on these numbers and polynomials.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] A q-analogue of the bi-periodic Fibonacci and Lucas sequences and Rogers–Ramanujan Identities
    Nassima Belaggoun
    Hacène Belbachir
    Athmane Benmezai
    The Ramanujan Journal, 2023, 60 : 693 - 728
  • [22] BI-PERIODIC HYPER-FIBONACCI NUMBERS
    Belaggoun, Nassima
    Belbachir, Hacene
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2025, 49 (04): : 603 - 614
  • [23] A q-analogue of the bi-periodic Fibonacci and Lucas sequences and Rogers-Ramanujan Identities
    Belaggoun, Nassima
    Belbachir, Hacene
    Benmezai, Athmane
    RAMANUJAN JOURNAL, 2023, 60 (03): : 693 - 728
  • [24] Generating matrix of the bi-periodic Lucas numbers
    Coskun, Arzu
    Taskara, Necati
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [25] A Generalization of Dual Bi-Periodic Fibonacci Quaternions
    Tan, E.
    Gok, I
    JOURNAL OF MATHEMATICAL EXTENSION, 2019, 13 (01) : 67 - 81
  • [26] Correction to: On the spectral norms of r-circulant matrices with the bi-periodic Fibonacci and Lucas numbers
    Cahit Köme
    Yasin Yazlik
    Journal of Inequalities and Applications, 2018
  • [27] Continued fractions for bi-periodic Fibonacci sequence
    Belaggoun, Nassima
    Belbachir, Hacene
    ANNALES MATHEMATICAE ET INFORMATICAE, 2023, 59 : 1 - 12
  • [28] Combinatorial Identities for The Bi-Periodic Fibonacci Numbers Squared
    Belaggoun, Nassima
    Belbachir, Hacene
    FIBONACCI QUARTERLY, 2024, 62 (02): : 136 - 146
  • [29] NOVEL PROPERTIES OF FIBONACCI AND LUCAS POLYNOMIALS
    GALVEZ, FJ
    DEHESA, JS
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1985, 97 (JAN) : 159 - 164
  • [30] PROPERTIES OF GENERALIZED FIBONACCI AND LUCAS POLYNOMIALS
    Agrawal, Garvita
    Teeth, Manjeet Singh
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2022, 21 (3-4): : 175 - 188