On the Expansion of Fibonacci and Lucas Polynomials

被引:0
|
作者
Prodinger, Helmut [1 ]
机构
[1] Univ Stellenbosch, Dept Math, ZA-7602 Stellenbosch, South Africa
关键词
Fibonacci polynomials; Lucas polynomials; generating functions; q-analogues;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Belbachir and Bencherif have expanded Fibonacci and Lucas polynomials using bases of Fibonacci-and Lucas-like polynomials. Here, we provide simplified proofs for the expansion formulae that in essence a computer can do. Furthermore, for 2 of the 5 instances, we find q-analogues.
引用
下载
收藏
页数:5
相关论文
共 50 条
  • [21] BIVARIATE GAUSSIAN FIBONACCI AND LUCAS POLYNOMIALS
    Asci, Mustafa
    Gurel, Esref
    ARS COMBINATORIA, 2013, 109 : 461 - 472
  • [22] PROPERTIES OF GENERALIZED FIBONACCI AND LUCAS POLYNOMIALS
    Agrawal, Garvita
    Teeth, Manjeet Singh
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2022, 21 (3-4): : 175 - 188
  • [23] Bivariate Fibonacci and Lucas Like Polynomials
    Kocer, E. Gokcen
    Tuncez, Serife
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2016, 29 (01): : 109 - 113
  • [24] The Irregularity Polynomials of Fibonacci and Lucas cubes
    Ömer Eğecioğlu
    Elif Saygı
    Zülfükar Saygı
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 753 - 765
  • [25] On Gauss Fibonacci polynomials, on Gauss Lucas polynomials and their applications
    Ozkan, Engin
    Tastan, Merve
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (03) : 952 - 960
  • [26] Several identities involving the Fibonacci polynomials and Lucas polynomials
    Wu, Zhengang
    Zhang, Wenpeng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [27] Several identities involving the Fibonacci polynomials and Lucas polynomials
    Zhengang Wu
    Wenpeng Zhang
    Journal of Inequalities and Applications, 2013
  • [28] Generalized Fibonacci and Lucas polynomials and their associated diagonal polynomials
    Swamy, MNS
    FIBONACCI QUARTERLY, 1999, 37 (03): : 213 - 222
  • [29] GENERALIZED CYCLOTOMIC POLYNOMIALS, FIBONACCI CYCLOTOMIC POLYNOMIALS, AND LUCAS CYCLOTOMIC POLYNOMIALS
    KIMBERLING, C
    FIBONACCI QUARTERLY, 1980, 18 (02): : 108 - 126
  • [30] BINARY LUCAS AND FIBONACCI POLYNOMIALS .1.
    FREI, G
    MATHEMATISCHE NACHRICHTEN, 1980, 96 : 83 - 112