Invariant subpixel target identification in hyperspectral imagery

被引:17
|
作者
Thai, B [1 ]
Healey, G [1 ]
机构
[1] Univ Calif Irvine, Comp Vis Lab, Irvine, CA 92697 USA
关键词
subpixel detection; hyperspectral imagery;
D O I
10.1117/12.353034
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
We present an algorithm for subpixel material identification that is invariant to the illumination and atmospheric conditions. The target material spectral reflectance is the only prior information required by the algorithm. A target material subspace model is constructed from the reflectance using a physical model and a background subspace model is estimated directly from the image. These two subspace models are used to compute maximum likelihood estimates for the target material component and the background component at each image pixel. These estimates form the basis of a generalized likelihood ratio test for subpixel material identification. We present experimental results using HYDICE imagery that demonstrate the utility of the algorithm for subpixel material identification under varying illumination and atmospheric conditions.
引用
下载
收藏
页码:14 / 24
页数:11
相关论文
共 50 条
  • [21] Compression of Hyperspectral Images Containing a Subpixel Target
    Huber-Lerner, Merav
    Hadar, Ofer
    Rotman, Stanley R.
    Huber-Shalem, Revital
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2246 - 2255
  • [22] Exploiting an atmospheric model for automated invariant material identification in hyperspectral imagery
    Slater, D
    Healey, G
    ALGORITHMS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY IV, 1998, 3372 : 60 - 71
  • [23] Stochastic compositional models applied to subpixel analysis of hyperspectral imagery
    Stein, DWJ
    IMAGING SPECTROMETRY VII, 2001, 4480 : 49 - 56
  • [24] Identification and detection of gaseous effluents from hyperspectral imagery using invariant algorithms
    O'Donnell, EM
    Messinger, DW
    Salvaggio, C
    Schott, JR
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY X, 2004, 5425 : 573 - 582
  • [25] Adaptive smoothing for subpixel target detection in hyperspectral imaging
    Bajorski, Peter
    Hall, Peter
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XII PTS 1 AND 2, 2006, 6233
  • [26] A hypothesis independent subpixel target detector for hyperspectral Images
    Du, Bo
    Zhang, Yuxiang
    Zhang, Liangpei
    Zhang, Lefei
    SIGNAL PROCESSING, 2015, 110 : 244 - 249
  • [27] A Decision Fusion Framework for Hyperspectral Subpixel Target Detection
    Gholizadeh, Hamm
    Zoej, Mohammad Javad Valadan
    Mojaradi, Barat
    PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION, 2012, (03): : 267 - 280
  • [28] Subpixel target size estimation for remotely sensed imagery
    Chang, CI
    Ren, HA
    D'Amico, F
    Jensen, JO
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY IX, 2003, 5093 : 398 - 407
  • [29] Constrained subpixel target detection for remotely sensed imagery
    Chang, CI
    Heinz, DC
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (03): : 1144 - 1159
  • [30] Estimation of subpixel target size for remotely sensed imagery
    Chang, CI
    Ren, H
    Chang, CC
    D'Amico, F
    Jensen, JO
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (06): : 1309 - 1320