Invariant subpixel target identification in hyperspectral imagery

被引:17
|
作者
Thai, B [1 ]
Healey, G [1 ]
机构
[1] Univ Calif Irvine, Comp Vis Lab, Irvine, CA 92697 USA
关键词
subpixel detection; hyperspectral imagery;
D O I
10.1117/12.353034
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
We present an algorithm for subpixel material identification that is invariant to the illumination and atmospheric conditions. The target material spectral reflectance is the only prior information required by the algorithm. A target material subspace model is constructed from the reflectance using a physical model and a background subspace model is estimated directly from the image. These two subspace models are used to compute maximum likelihood estimates for the target material component and the background component at each image pixel. These estimates form the basis of a generalized likelihood ratio test for subpixel material identification. We present experimental results using HYDICE imagery that demonstrate the utility of the algorithm for subpixel material identification under varying illumination and atmospheric conditions.
引用
下载
收藏
页码:14 / 24
页数:11
相关论文
共 50 条
  • [41] Methods and challenges for target detection and material identification for longwave infrared hyperspectral imagery
    Rankin, Blake M.
    Meola, Joseph
    Perry, David L.
    Kaufman, Jason R.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXII, 2016, 9840
  • [42] Hyperspectral subpixel target detection based on interaction subspace model
    Sun, Shengyin
    Liu, Jun
    Sun, Siyu
    PATTERN RECOGNITION, 2023, 139
  • [43] Algorithms of target detection on hyperspectral imagery
    Yan, Yahui
    Liu, Bingqi
    OPTIK, 2013, 124 (23): : 6341 - 6344
  • [44] Kernel-based subpixel target detection in hyperspectral images
    Kwon, H
    Nasrabadi, NM
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 717 - 721
  • [45] Point target detection and subpixel position estimation in optical imagery
    Samson, V
    Champagnat, F
    Giovannelli, JF
    APPLIED OPTICS, 2004, 43 (02) : 257 - 263
  • [46] Automatic subpixel target detection for multispectral remotely sensed imagery
    Ren, H
    CHEMICAL AND BIOLOGICAL STANDOFF DETECTION II, 2004, 5584 : 194 - 201
  • [47] Lagrange constraint neural network for fully constrained subpixel classification in hyperspectral imagery
    Ren, H
    Szu, H
    Buss, J
    WAVELET AND INDEPENDENT COMPONENET ANALYSIS APPLICATIONS IX, 2002, 4738 : 184 - 190
  • [48] Subspace selection for subpixel detection of 3D objects in hyperspectral imagery
    Liu, Y
    Healey, G
    Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, 2005, 5806 : 13 - 22
  • [49] Using Linear Spectral Unmixing for Subpixel Mapping of Hyperspectral Imagery: A Quantitative Assessment
    Xu, Xiong
    Tong, Xiaohua
    Plaza, Antonio
    Zhong, Yanfei
    Xie, Huan
    Zhang, Liangpei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (04) : 1589 - 1600
  • [50] Design and Demonstration of a Lattice-Based Target for Hyperspectral Subpixel Target Detection Experiments
    Canas, Chase
    Kerekes, John P.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 10