A hypothesis independent subpixel target detector for hyperspectral Images

被引:28
|
作者
Du, Bo [1 ]
Zhang, Yuxiang [2 ]
Zhang, Liangpei [3 ]
Zhang, Lefei [1 ]
机构
[1] Wuhan Univ, Sch Comp, Wuhan, Peoples R China
[2] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan, Peoples R China
[3] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Peoples R China
来源
SIGNAL PROCESSING | 2015年 / 110卷
基金
中国国家自然科学基金;
关键词
Hyperspectral image; Hypothesis independent; Maximum likelihood method; Matched subspace detector; Subpixel target detection; DISCRIMINANT-ANALYSIS; CLASSIFICATION;
D O I
10.1016/j.sigpro.2014.08.018
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In previous work, the statistical characteristics of the background or the noise under Ho hypothesis are similar as that under H-1 hypothesis. Accordingly, the parameters under both hypotheses are estimated by the maximum likelihood method and finally a generalized likelihood ratio test based detector is developed, such as the matched subspace detector. Unfortunately, this kind of statistical similarity for both hypotheses may be changing, which is directly related to the unknown beforehand target fill factor. A hypothesis independent method is proposed to solve this problem, which uses different approaches to estimate the parameters for different hypotheses. Experiments on simulated data and real hyperspectral image demonstrate the ability of this proposed detector for subpixel target detection. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:244 / 249
页数:6
相关论文
共 50 条
  • [1] Subpixel Target Enhancement in Hyperspectral Images
    Arora, Manoj K.
    Tiwari, K. C.
    [J]. DEFENCE SCIENCE JOURNAL, 2013, 63 (01) : 63 - 68
  • [2] Subpixel Target Detection and Enhancement in Hyperspectral Images
    Tiwari, K. C.
    Arora, M.
    Singh, D.
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVII, 2011, 8048
  • [3] Compression of Hyperspectral Images Containing a Subpixel Target
    Huber-Lerner, Merav
    Hadar, Ofer
    Rotman, Stanley R.
    Huber-Shalem, Revital
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2246 - 2255
  • [4] Kernel-based subpixel target detection for hyperspectral images
    Gu Yanfeng
    Liu Ying
    Zhang Ye
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2007, 16 (03) : 485 - 488
  • [5] Kernel-based subpixel target detection in hyperspectral images
    Kwon, H
    Nasrabadi, NM
    [J]. 2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 717 - 721
  • [6] Spatial-spectral segmentation of hyperspectral images for subpixel target detection
    Liang, Yilong
    Markopoulos, Panos P.
    Saber, Eli
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (03):
  • [7] Analytical comparison of subpixel target detectors in structured models for hyperspectral images
    Bajorski, P
    [J]. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, 2005, 5806 : 850 - 860
  • [8] Bayesian Target Detection Algorithms for Solid Subpixel Targets in Hyperspectral Images
    Matteoli, Stefania
    Theiler, James
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [9] SUBPIXEL TARGET DETECTION IN HYPERSPECTRAL IMAGES FROM SUPERPIXEL BACKGROUND STATISTICS
    Liang, Yilong
    Markopoulos, Panos P.
    Saber, Eli S.
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7018 - 7021
  • [10] Closed-Form Nonparametric GLRT Detector for Subpixel Targets in Hyperspectral Images
    Matteoli, Stefania
    Diani, Marco
    Corsini, Giovanni
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (02) : 1568 - 1581