Imaging Biomarker Ontology (IBO): A Biomedical Ontology to Annotate and Share Imaging Biomarker Data

被引:2
|
作者
Amdouni, Emna [1 ,2 ]
Gibaud, Bernard [1 ,2 ]
机构
[1] Bcom Inst Res & Technol, Rennes, France
[2] Univ Rennes 1, LTSI Inserm 1099, Rennes, France
关键词
Knowledge representation; Imaging biomarker; Ontology development; Biomedical ontologies;
D O I
10.1007/s13740-018-0093-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Imaging biomarkers refer to radiological measurements that characterize biological processes of imaged subjects and help clinicians particularly in the assessment of therapeutic responses and the early prediction of pathologies. Several imaging features (size of a lesion, volume of a tumor, blood perfusion in a specific anatomical region, anisotropic water diffusion in a particular tissue region, etc.) are quantified and reported in the clinical practice. The growth of the number of research studies addressing imaging biomarkers and the increasing use of these measurements in the radiological routine necessitates the use of semantic research tools. The use of semantic technologies will enable to efficiently retrieve imaging-related data and to enhance the interoperability in the biomedical field. While many efforts have been conducted regarding the definition of a standardized vocabulary to support the sharing of the imaging biomarker knowledge, the definition of the term imaging biomarker stills inconsistent. In this paper, we introduce our motivation for semantically describing this concept and we outline shortcomings of the state-of-the-art methods. Here, we propose a semantic representation of the imaging biomarker concept that is based on the articulation of its three main semantic axes, namely the measured quality, the measurement tool and the decision tool. The developed ontology is called the Imaging Biomarker Ontology (IBO) and uses existing biomedical ontologies. A preliminary use case is studied to illustrate the utility of IBO in annotating quantitative and qualitative imaging data from the TCGA (The Cancer Genome Atlas) collection.
引用
收藏
页码:223 / 236
页数:14
相关论文
共 50 条
  • [31] Imaging biomarker roadmap for cancer studies
    James P. B. O'Connor
    Eric O. Aboagye
    Judith E. Adams
    Hugo J. W. L. Aerts
    Sally F. Barrington
    Ambros J. Beer
    Ronald Boellaard
    Sarah E. Bohndiek
    Michael Brady
    Gina Brown
    David L. Buckley
    Thomas L. Chenevert
    Laurence P. Clarke
    Sandra Collette
    Gary J. Cook
    Nandita M. deSouza
    John C. Dickson
    Caroline Dive
    Jeffrey L. Evelhoch
    Corinne Faivre-Finn
    Ferdia A. Gallagher
    Fiona J. Gilbert
    Robert J. Gillies
    Vicky Goh
    John R. Griffiths
    Ashley M. Groves
    Steve Halligan
    Adrian L. Harris
    David J. Hawkes
    Otto S. Hoekstra
    Erich P. Huang
    Brian F. Hutton
    Edward F. Jackson
    Gordon C. Jayson
    Andrew Jones
    Dow-Mu Koh
    Denis Lacombe
    Philippe Lambin
    Nathalie Lassau
    Martin O. Leach
    Ting-Yim Lee
    Edward L. Leen
    Jason S. Lewis
    Yan Liu
    Mark F. Lythgoe
    Prakash Manoharan
    Ross J. Maxwell
    Kenneth A. Miles
    Bruno Morgan
    Steve Morris
    Nature Reviews Clinical Oncology, 2017, 14 : 169 - 186
  • [32] Imaging as a pharmacodynamic and response biomarker in cancer
    Merchant S.
    Witney T.H.
    Aboagye E.O.
    Clinical and Translational Imaging, 2014, 2 (1) : 13 - 31
  • [33] What is the optimal imaging biomarker for CADASIL?
    Kuroda, Takehito
    Saito, Satoshi
    Tanaka, Tomotaka
    Abe, Soichiro
    Ishiyama, Hiroyuki
    Nakazawa, Shinsaku
    Nukata, Ryotaro
    Nakaoku, Yuriko
    Morita, Yoshiaki
    Fukuda, Tetsuya
    Nishimura, Kunirhiro
    Aso, Toshihiko
    Ihara, Masafumi
    CEREBROVASCULAR DISEASES, 2024, 53 : 295 - 295
  • [34] Multiphoton Angiogenesis and Tumor Biomarker Imaging
    Belfield, Kevin D.
    2011 IEEE 61ST ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC), 2011, : 1314 - 1318
  • [35] Visualization of Biomedical Pathway Ontology Linked Data Based on Cytoscape
    Li, Fan
    Huang, Weixiong
    Jiang, Ying
    Liang, Zijie
    Lin, Jingyi
    Lin, Liyou
    Zhou, Yigang
    2015 3RD ASIAN PACIFIC CONFERENCE ON MECHATRONICS AND CONTROL EINGINEERING (APCMCE 2015), 2015, : 320 - 326
  • [36] Biomedical Ontology Quality Assurance Using a Big Data Approach
    Cui, Licong
    Tao, Shiqiang
    Zhang, Guo-Qiang
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2016, 10 (04)
  • [37] IMSmining: A Tool for Imaging Mass Spectrometry Data Biomarker Selection and Classification
    Liang, Jingsai
    Hong, Don
    Zhang, Fengqing
    Zou, Jiancheng
    MATHEMATICS AND COMPUTING, 2015, 139 : 155 - 162
  • [38] Editorial: Biomarker Detection Algorithms and Tools for Medical Imaging or Omics Data
    Cho, William C.
    Zhou, Fengfeng
    Li, Jie
    Hua, Lin
    Liu, Feng
    FRONTIERS IN GENETICS, 2022, 13
  • [39] Dynamic contrast enhanced magnetic resonance imaging as an imaging biomarker
    Langer, Mathias
    Schaefer, Arnd-Oliver
    STRAHLENTHERAPIE UND ONKOLOGIE, 2007, 183 (01) : 51 - 51
  • [40] Restriction Spectrum Imaging: An Evolving Imaging Biomarker in Prostate MRI
    Brunsing, Ryan L.
    Schenker-Ahmed, Natalie M.
    White, Nathan S.
    Parsons, J. Kellogg
    Kane, Christopher
    Kuperman, Joshua
    Bartsch, Hauke
    Kader, Andrew Karim
    Rakow-Penner, Rebecca
    Seibert, Tyler M.
    Margolis, Daniel
    Raman, Steven S.
    McDonald, Carrie R.
    Farid, Nikdokht
    Kesari, Santosh
    Hansel, Donna
    Shabaik, Ahmed
    Dale, Anders M.
    Karow, David S.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 45 (02) : 323 - 336