IMSmining: A Tool for Imaging Mass Spectrometry Data Biomarker Selection and Classification

被引:0
|
作者
Liang, Jingsai [1 ]
Hong, Don [1 ,2 ]
Zhang, Fengqing [3 ]
Zou, Jiancheng [1 ,2 ]
机构
[1] Middle Tennessee State Univ, Computat Sci Program, Murfreesboro, TN 37130 USA
[2] North China Univ Technol, Coll Sci, Beijing, Peoples R China
[3] Drexel Univ, Dept Psychol, Philadelphia, PA 19104 USA
来源
MATHEMATICS AND COMPUTING | 2015年 / 139卷
关键词
IMS data processing; Statistical computing; Wavelet application; Biomarker selection and Classification; Software package; ELASTIC NET;
D O I
10.1007/978-81-322-2452-5_11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We developed IMSmining, a free software tool combining functions of intuitive visualization of imaging mass spectrometry (IMS) data with advanced analysis algorithms in a single package which is easy to operate. Main functions of IMSmining include data visualization, biomarker selection, and classification using advanced multivariate analysis methods such as elastic net, sparse PCA, as well as wavelets. It can be used to study the correlation and distribution of the IMS data by incorporating the spatial information in the entire image cube and to help finding the distinction of the possible features caused by the biological structure and the potential biomarkers. This software package can be downloaded from http://capone.mtsu.edu/dhong/IMSmining.htm.
引用
收藏
页码:155 / 162
页数:8
相关论文
共 50 条
  • [1] Elastic net-based framework for imaging mass spectrometry data biomarker selection and classification
    Zhang, Fengqing
    Hong, Don
    STATISTICS IN MEDICINE, 2011, 30 (07) : 753 - 768
  • [2] A clustering based hybrid system for biomarker selection and sample classification of mass spectrometry data
    Yang, Pengyi
    Zhang, Zili
    Zhou, Bing B.
    Zomaya, Albert Y.
    NEUROCOMPUTING, 2010, 73 (13-15) : 2317 - 2331
  • [3] MALDI Mass Spectrometry Imaging: A Novel Tool for the Identification and Classification of Amyloidosis
    Winter, Martin
    Tholey, Andreas
    Kristen, Arnt
    Roecken, Christoph
    PROTEOMICS, 2017, 17 (22)
  • [4] Enhancing Classification of Mass Spectrometry Imaging Data with Deep Neural Networks
    Thomas, Spencer A.
    Jin, Yaochu
    Bunch, Josephine
    Gilmore, Ian S.
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 3525 - 3532
  • [5] Imaging mass spectrometry in biomarker discovery and validation
    Schwamborn, Kristina
    JOURNAL OF PROTEOMICS, 2012, 75 (16) : 4990 - 4998
  • [6] Adaptive bandwidth selection for biomarker discovery in mass spectrometry
    Fischer, Bernd
    Roth, Volker
    Buhmann, Joachim M.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2009, 45 (2-3) : 207 - 214
  • [7] Automated Morphological and Morphometric Analysis of Mass Spectrometry Imaging Data: Application to Biomarker Discovery
    de Muller, Gael Picard
    Ait-Belkacem, Rima
    Bonnel, David
    Longuespee, Remi
    Stauber, Jonathan
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2017, 28 (12) : 2635 - 2645
  • [8] Implications of Peak Selection in the Interpretation of Unsupervised Mass Spectrometry Imaging Data Analyses
    Murta, Teresa
    Steven, Rory T.
    Nikula, Chelsea J.
    Thomas, Spencer A.
    Zeiger, Lucas B.
    Dexter, Alex
    Elia, Efstathios A.
    Yan, Bin
    Campbell, Andrew D.
    Goodwin, Richard J. A.
    Takats, Zoltan
    Sansom, Owen J.
    Bunch, Josephine
    ANALYTICAL CHEMISTRY, 2021, 93 (04) : 2309 - 2316
  • [9] A comparative investigation of modern feature selection and classification approaches for the analysis of mass spectrometry data
    Gromski, Piotr S.
    Xu, Yun
    Correa, Elon
    Ellis, David I.
    Turner, Michael L.
    Goodacre, Royston
    ANALYTICA CHIMICA ACTA, 2014, 829 : 1 - 8
  • [10] Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data
    Zhang, XG
    Lu, X
    Shi, Q
    Xu, XQ
    Leung, HCE
    Harris, LN
    D Iglehart, J
    Miron, A
    Liu, JS
    Wong, WH
    BMC BIOINFORMATICS, 2006, 7 (1)