IMSmining: A Tool for Imaging Mass Spectrometry Data Biomarker Selection and Classification

被引:0
|
作者
Liang, Jingsai [1 ]
Hong, Don [1 ,2 ]
Zhang, Fengqing [3 ]
Zou, Jiancheng [1 ,2 ]
机构
[1] Middle Tennessee State Univ, Computat Sci Program, Murfreesboro, TN 37130 USA
[2] North China Univ Technol, Coll Sci, Beijing, Peoples R China
[3] Drexel Univ, Dept Psychol, Philadelphia, PA 19104 USA
来源
MATHEMATICS AND COMPUTING | 2015年 / 139卷
关键词
IMS data processing; Statistical computing; Wavelet application; Biomarker selection and Classification; Software package; ELASTIC NET;
D O I
10.1007/978-81-322-2452-5_11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We developed IMSmining, a free software tool combining functions of intuitive visualization of imaging mass spectrometry (IMS) data with advanced analysis algorithms in a single package which is easy to operate. Main functions of IMSmining include data visualization, biomarker selection, and classification using advanced multivariate analysis methods such as elastic net, sparse PCA, as well as wavelets. It can be used to study the correlation and distribution of the IMS data by incorporating the spatial information in the entire image cube and to help finding the distinction of the possible features caused by the biological structure and the potential biomarkers. This software package can be downloaded from http://capone.mtsu.edu/dhong/IMSmining.htm.
引用
收藏
页码:155 / 162
页数:8
相关论文
共 50 条
  • [31] A public repository for mass spectrometry imaging data
    Roempp, Andreas
    Wang, Rui
    Albar, Juan Pablo
    Urbani, Andrea
    Hermjakob, Henning
    Spengler, Bernhard
    Vizcano, Juan Antonio
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2015, 407 (08) : 2027 - 2033
  • [32] A public repository for mass spectrometry imaging data
    Andreas Römpp
    Rui Wang
    Juan Pablo Albar
    Andrea Urbani
    Henning Hermjakob
    Bernhard Spengler
    Juan Antonio Vizcaíno
    Analytical and Bioanalytical Chemistry, 2015, 407 : 2027 - 2033
  • [33] New software for imaging mass spectrometry data
    Matsuura, Masaaki
    Ushijima, Masaru
    Yuba-Kubo, Akiko
    Wakui, Masatoshi
    Ohmura, Mitsuyo
    Hosaka, Kurando
    Hayasaka, Takahiro
    Masaki, Noritaka
    Miyata, Satoshi
    Yao, Ikuko
    Setou, Mitsutoshi
    Ogawa, Kiyoshi
    Kajihara, Shigeki
    CANCER RESEARCH, 2012, 72
  • [34] Hyperspectral Visualization of Mass Spectrometry Imaging Data
    Fonville, Judith M.
    Carter, Claire L.
    Pizarro, Luis
    Steven, Rory T.
    Palmer, Andrew D.
    Griffiths, Rian L.
    Lalor, Patricia F.
    Lindon, John C.
    Nicholson, Jeremy K.
    Holmes, Elaine
    Bunch, Josephine
    ANALYTICAL CHEMISTRY, 2013, 85 (03) : 1415 - 1423
  • [35] Secondary Ion Mass Spectrometry as an advanced tool for meteorite classification
    Novakova, Justina
    Jerigova, Monika
    Jane, Eduard
    Szoecs, Vojtech
    Velic, Dusan
    PLANETARY AND SPACE SCIENCE, 2020, 192
  • [36] Feature selection and nearest centroid classification for protein mass spectrometry
    Levner, I
    BMC BIOINFORMATICS, 2005, 6 (1)
  • [37] Feature selection and nearest centroid classification for protein mass spectrometry
    Ilya Levner
    BMC Bioinformatics, 6
  • [38] MSPtool: A versatile tool for mass spectrometry data preprocessing
    Gullo, F.
    Ponti, G.
    Tagarelli, A.
    Tradigo, G.
    Veltri, P.
    PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, 2008, : 209 - +
  • [39] Bayesian model selection for mining mass spectrometry data
    Saksena, A
    Lucarelli, D
    Wang, IJ
    NEURAL NETWORKS, 2005, 18 (5-6) : 843 - 849
  • [40] Mass Spectrometry Sensing Data for Robust Cancer Classification
    Awedat, Khalfalla
    Abdel-Qader, Ikhlas
    Springstead, James R.
    2016 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2016, : 258 - 262