IMSmining: A Tool for Imaging Mass Spectrometry Data Biomarker Selection and Classification

被引:0
|
作者
Liang, Jingsai [1 ]
Hong, Don [1 ,2 ]
Zhang, Fengqing [3 ]
Zou, Jiancheng [1 ,2 ]
机构
[1] Middle Tennessee State Univ, Computat Sci Program, Murfreesboro, TN 37130 USA
[2] North China Univ Technol, Coll Sci, Beijing, Peoples R China
[3] Drexel Univ, Dept Psychol, Philadelphia, PA 19104 USA
来源
MATHEMATICS AND COMPUTING | 2015年 / 139卷
关键词
IMS data processing; Statistical computing; Wavelet application; Biomarker selection and Classification; Software package; ELASTIC NET;
D O I
10.1007/978-81-322-2452-5_11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We developed IMSmining, a free software tool combining functions of intuitive visualization of imaging mass spectrometry (IMS) data with advanced analysis algorithms in a single package which is easy to operate. Main functions of IMSmining include data visualization, biomarker selection, and classification using advanced multivariate analysis methods such as elastic net, sparse PCA, as well as wavelets. It can be used to study the correlation and distribution of the IMS data by incorporating the spatial information in the entire image cube and to help finding the distinction of the possible features caused by the biological structure and the potential biomarkers. This software package can be downloaded from http://capone.mtsu.edu/dhong/IMSmining.htm.
引用
收藏
页码:155 / 162
页数:8
相关论文
共 50 条
  • [21] Analysis of premalignant pancreatic cancer mass spectrometry data for biomarker selection using a group search optimizer
    He, S.
    Cooper, H. J.
    Ward, D. G.
    Yao, X.
    Heath, J. K.
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2012, 34 (06) : 668 - 676
  • [22] Chemical QuantArray: A Quantitative Tool for Mass Spectrometry Imaging
    Stopka, Sylwia A.
    Ruiz, Daniela
    Baquer, Gerard
    Bodineau, Clement
    Hossain, Md Amin
    Pellens, Valentina T.
    Regan, Michael S.
    Pourquie, Olivier
    Haigis, Marcia C.
    Bi, Wenya L.
    Coy, Shannon M.
    Santagata, Sandro
    Agar, Nathalie Y. R.
    Basu, Sankha S.
    ANALYTICAL CHEMISTRY, 2023, 95 (30) : 11243 - 11253
  • [23] MALDI imaging mass spectrometry: an emerging tool in neurology
    Schnackenberg, Laura K.
    Thorn, David A.
    Barnette, Dustyn
    Jones, E. Ellen
    METABOLIC BRAIN DISEASE, 2022, 37 (01) : 105 - 121
  • [24] MALDI imaging mass spectrometry: an emerging tool in neurology
    Laura K. Schnackenberg
    David A. Thorn
    Dustyn Barnette
    E. Ellen Jones
    Metabolic Brain Disease, 2022, 37 : 105 - 121
  • [25] A new imaging technique as a diagnostic tool:: mass spectrometry
    Touboul, David
    Brunelle, Alain
    Germain, Dominique P.
    Laprevote, Olivier
    PRESSE MEDICALE, 2007, 36 : S82 - S87
  • [26] Metabolite imaging by mass spectrometry: A new discovery tool
    Walker, Heather J.
    PLANT METABOLOMICS IN FULL SWING, 2021, 98 : 271 - 296
  • [27] Mass spectrometry-based proteomics: A useful tool for biomarker discovery?
    Gramolini, A. O.
    Peterman, S. M.
    Kislinger, T.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2008, 83 (05) : 758 - 760
  • [28] Deep learning for tumor classification in imaging mass spectrometry
    Behrmann, Jens
    Etmann, Christian
    Boskamp, Tobias
    Casadonte, Rita
    Kriegsmann, Joerg
    Maass, Peter
    BIOINFORMATICS, 2018, 34 (07) : 1215 - 1223
  • [29] ABC Algorithm as Feature Selection for Biomarker Discovery in Mass Spectrometry Analysis
    SyarifahAdilah, M. Y.
    Abdullah, Rosni
    Venkat, Ibrahim
    2012 4TH CONFERENCE ON DATA MINING AND OPTIMIZATION (DMO), 2012, : 67 - 72
  • [30] Multivariate analysis of imaging mass spectrometry data
    Muir, E. R.
    Ndiour, I. J.
    Le Goasduff, N. A.
    Moffitt, R. A.
    Liu, Y.
    Sullards, M. C.
    Merrill, A. H., Jr.
    Chen, Y.
    Wang, M. D.
    PROCEEDINGS OF THE 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOINFORMATICS AND BIOENGINEERING, VOLS I AND II, 2007, : 472 - +