Imaging Biomarker Ontology (IBO): A Biomedical Ontology to Annotate and Share Imaging Biomarker Data

被引:2
|
作者
Amdouni, Emna [1 ,2 ]
Gibaud, Bernard [1 ,2 ]
机构
[1] Bcom Inst Res & Technol, Rennes, France
[2] Univ Rennes 1, LTSI Inserm 1099, Rennes, France
关键词
Knowledge representation; Imaging biomarker; Ontology development; Biomedical ontologies;
D O I
10.1007/s13740-018-0093-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Imaging biomarkers refer to radiological measurements that characterize biological processes of imaged subjects and help clinicians particularly in the assessment of therapeutic responses and the early prediction of pathologies. Several imaging features (size of a lesion, volume of a tumor, blood perfusion in a specific anatomical region, anisotropic water diffusion in a particular tissue region, etc.) are quantified and reported in the clinical practice. The growth of the number of research studies addressing imaging biomarkers and the increasing use of these measurements in the radiological routine necessitates the use of semantic research tools. The use of semantic technologies will enable to efficiently retrieve imaging-related data and to enhance the interoperability in the biomedical field. While many efforts have been conducted regarding the definition of a standardized vocabulary to support the sharing of the imaging biomarker knowledge, the definition of the term imaging biomarker stills inconsistent. In this paper, we introduce our motivation for semantically describing this concept and we outline shortcomings of the state-of-the-art methods. Here, we propose a semantic representation of the imaging biomarker concept that is based on the articulation of its three main semantic axes, namely the measured quality, the measurement tool and the decision tool. The developed ontology is called the Imaging Biomarker Ontology (IBO) and uses existing biomedical ontologies. A preliminary use case is studied to illustrate the utility of IBO in annotating quantitative and qualitative imaging data from the TCGA (The Cancer Genome Atlas) collection.
引用
收藏
页码:223 / 236
页数:14
相关论文
共 50 条
  • [41] SHARE-ODS: An ontology data service for Search and Rescue operations
    Konstantopoulos, Stasinos
    Paliouras, Georgios
    Chatzinotas, Symeon
    ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 3955 : 525 - 528
  • [42] MRIO: the Magnetic Resonance Imaging Acquisition and Analysis Ontology
    Bartnik, Alexander
    Serra, Lucas M.
    Smith, Mackenzie
    Duncan, William D.
    Wishnie, Lauren
    Ruttenberg, Alan
    Dwyer, Michael G.
    Diehl, Alexander D.
    NEUROINFORMATICS, 2024, 22 (03) : 269 - 283
  • [43] Ontology and image semantics in multimodal imaging: submission and retrieval
    Bei, Yun
    Belmamoune, Mounia
    Verbeek, Fons J.
    INTERNET IMAGING VII, 2006, 6061
  • [44] Insights from an autism imaging biomarker challenge: Promises and threats to biomarker discovery
    Traut, Nicolas
    Heuer, Katja
    Lemaitre, Guillaume
    Beggiato, Anita
    Germanaud, David
    Elmaleh, Monique
    Bethegnies, Alban
    Bonnasse-Gahot, Laurent
    Cai, Weidong
    Chambon, Stanislas
    Cliquet, Freddy
    Ghriss, Ayoub
    Guigui, Nicolas
    de Pierrefeu, Amicie
    Wang, Meng
    Zantedeschi, Valentina
    Boucaud, Alexandre
    van den Bossche, Joris
    Kegl, Balazs
    Delorme, Richard
    Bourgeron, Thomas
    Toro, Roberto
    Varoquaux, Gael
    NEUROIMAGE, 2022, 255
  • [45] Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker
    Hylton, Nola
    JOURNAL OF CLINICAL ONCOLOGY, 2006, 24 (20) : 3293 - 3298
  • [46] Computed tomography perfusion imaging as a potential imaging biomarker of colorectal cancer
    Koichi Hayano
    Takeshi Fujishiro
    Dushyant V Sahani
    Asami Satoh
    Tomoyoshi Aoyagi
    Gaku Ohira
    Toru Tochigi
    Hisahiro Matsubara
    Kiyohiko Shuto
    World Journal of Gastroenterology, 2014, 20 (46) : 17345 - 17351
  • [47] Computed tomography perfusion imaging as a potential imaging biomarker of colorectal cancer
    Hayano, Koichi
    Fujishiro, Takeshi
    Sahani, Dushyant V.
    Satoh, Asami
    Aoyagi, Tomoyoshi
    Ohira, Gaku
    Tochigi, Toru
    Matsubara, Hisahiro
    Shuto, Kiyohiko
    WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (46) : 17345 - 17351
  • [48] DISim: Ontology-driven Simulation of Biomedical Data Integration Tasks
    Sernadela, Pedro
    Pereira, Artur
    Rossetti, Rosaldo
    2015 10TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2015,
  • [49] The Data Use Ontology to streamline responsible access to human biomedical datasets
    Lawson, Jonathan
    Cabili, Moran N.
    Kerry, Giselle
    Boughtwood, Tiffany
    Thorogood, Adrian
    Alper, Pinar
    Bowers, Sarion R.
    Boyles, Rebecca R.
    Brookes, Anthony J.
    Brush, Matthew
    Burdett, Tony
    Clissold, Hayley
    Donnelly, Stacey
    Dyke, Stephanie O. M.
    Freeberg, Mallory A.
    Haendel, Melissa A.
    Hata, Chihir
    Holub, Petr
    Jeanson, Francis
    Jene, Aina
    Kawashima, Minae
    Kawashima, Shuichi
    Konopko, Melissa
    Kyomugisha, Irene
    Li, Haoyuan
    Linden, Mikael
    Rodriguez, Laura Lyman
    Morita, Mizuki
    Mulder, Nicola
    Muller, Jean
    Nagaie, Satoshi
    Nasir, Jamal
    Ogishima, Soichi
    Wang, Vivian Ota
    Paglione, Laura D.
    Pandya, Ravi N.
    Parkinson, Helen
    Philippakis, Anthony A.
    Prasser, Fabian
    Rambla, Jordi
    Reinold, Kathy
    Rushton, Gregory A.
    Saltzman, Andrea
    Saunders, Gary
    Sofia, Heidi J.
    Spalding, John D.
    Swertz, Morris A.
    Tulchinsky, Ilia
    Enckevort, Esther J. van
    Varma, Susheel
    CELL GENOMICS, 2021, 1 (02):
  • [50] Local imaging of rectal cancer – update 2015: MRI as imaging biomarker [Lokale Bildgebung beim Rektumkarzinom – Update 2015: MRT als „Imaging“-Biomarker]
    Schäfer A.-O.
    Der Radiologe, 2015, 55 (11): : 1015 - 1028