ON SOLUBLE GROUPS OF AUTOMORPHISMS OF NONORIENTABLE KLEIN SURFACES

被引:0
|
作者
GROMADZKI, G
机构
[1] PEDAGOG UNIV WSP,INST MATH,PL-85064 BYDGOSZCZ,POLAND
[2] UNIV COMPLUTENSE MADRID,MADRID 3,SPAIN
关键词
RIEMANN SURFACES; KLEIN SURFACES; AUTOMORPHISM GROUPS; SOLUBLE GROUPS;
D O I
10.4064/fm-141-3-215-227
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify up to topological type nonorientable bordered Klein surfaces with maximal symmetry and soluble automorphism group provided its solubility degree does not exceed 4. Using this classification we show that a soluble group of automorphisms of a nonorientable Riemann surface of algebraic genus q greater-than-or-equal-to 2 has at most 24(q - 1) elements and that this bound is sharp for infinitely many values of q.
引用
收藏
页码:215 / 227
页数:13
相关论文
共 50 条
  • [41] Ising model on nonorientable surfaces: Exact solution for the Mobius strip and the Klein bottle
    Lu, WTT
    Wu, FY
    PHYSICAL REVIEW E, 2001, 63 (02):
  • [42] The Jacobian of a nonorientable Klein surface
    Pablo Arés-Gastesi
    Indranil Biswas
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2003, 113 : 139 - 152
  • [43] On uniqueness of automorphisms groups of Riemann surfaces
    Maximiliano, Leyton A.
    Hidalgo, Ruben A.
    REVISTA MATEMATICA IBEROAMERICANA, 2007, 23 (03) : 793 - 810
  • [44] Embedding groups of graph automorphisms in surfaces
    Los, JE
    Nitecki, ZH
    TOPOLOGY, 2004, 43 (01) : 49 - 69
  • [45] THE DESCRIPTION OF GROUPS OF AUTOMORPHISMS OF ENRIQUES SURFACES
    NIKULIN, VV
    DOKLADY AKADEMII NAUK SSSR, 1984, 277 (06): : 1324 - 1330
  • [46] On cyclic groups of automorphisms of Riemann surfaces
    Bujalance, E
    Conder, M
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 : 573 - 584
  • [47] Automorphisms of braid groups on orientable surfaces
    An, Byung Hee
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2016, 25 (05)
  • [48] First homology group of mapping class groups of nonorientable surfaces
    Korkmaz, M
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 123 : 487 - 499
  • [49] Soluble groups with few orbits under automorphisms
    Raimundo Bastos
    Alex C. Dantas
    Emerson de Melo
    Geometriae Dedicata, 2020, 209 : 119 - 123
  • [50] Soluble groups with few orbits under automorphisms
    Bastos, Raimundo
    Dantas, Alex C.
    de Melo, Emerson
    GEOMETRIAE DEDICATA, 2020, 209 (01) : 119 - 123