ON SOLUBLE GROUPS OF AUTOMORPHISMS OF NONORIENTABLE KLEIN SURFACES

被引:0
|
作者
GROMADZKI, G
机构
[1] PEDAGOG UNIV WSP,INST MATH,PL-85064 BYDGOSZCZ,POLAND
[2] UNIV COMPLUTENSE MADRID,MADRID 3,SPAIN
关键词
RIEMANN SURFACES; KLEIN SURFACES; AUTOMORPHISM GROUPS; SOLUBLE GROUPS;
D O I
10.4064/fm-141-3-215-227
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify up to topological type nonorientable bordered Klein surfaces with maximal symmetry and soluble automorphism group provided its solubility degree does not exceed 4. Using this classification we show that a soluble group of automorphisms of a nonorientable Riemann surface of algebraic genus q greater-than-or-equal-to 2 has at most 24(q - 1) elements and that this bound is sharp for infinitely many values of q.
引用
收藏
页码:215 / 227
页数:13
相关论文
共 50 条