Soluble groups with few orbits under automorphisms

被引:0
|
作者
Raimundo Bastos
Alex C. Dantas
Emerson de Melo
机构
[1] Universidade de Brasília,Departamento de Matemática
来源
Geometriae Dedicata | 2020年 / 209卷
关键词
Extensions; Automorphisms; Soluble groups; 20E22; 20E36;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a group. The orbits of the natural action of Aut(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{Aut}\,}}(G)$$\end{document} on G are called “automorphism orbits” of G, and the number of automorphism orbits of G is denoted by ω(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (G)$$\end{document}. We prove that if G is a soluble group of finite rank such that ω(G)<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (G)< \infty $$\end{document}, then G contains a torsion-free radicable nilpotent characteristic subgroup K such that G=K⋊H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = K \rtimes H$$\end{document}, where H is a finite group. Moreover, we classify the mixed order soluble groups of finite rank such that ω(G)=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (G)=3$$\end{document}.
引用
收藏
页码:119 / 123
页数:4
相关论文
共 50 条