Special issue on quantile regression and semiparametric methods

被引:5
|
作者
He, Xuming [1 ]
Kneib, Thomas [2 ]
Lamarche, Carlos [3 ]
Wang, Lan [4 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Georg August Univ Gottingen, Gottingen, Germany
[3] Univ Kentucky, Lexington, KY 40506 USA
[4] Univ Minnesota, Minneapolis, MN 55455 USA
关键词
D O I
10.1016/j.ecosta.2018.09.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
引用
收藏
页码:1 / 2
页数:2
相关论文
共 50 条
  • [31] Predicting pollution incidents through semiparametric quantile regression models
    J. Roca-Pardiñas
    C. Ordóñez
    Stochastic Environmental Research and Risk Assessment, 2019, 33 : 673 - 685
  • [32] BAYESIAN QUANTILE REGRESSION METHODS
    Lancaster, Tony
    Jun, Sung Jae
    JOURNAL OF APPLIED ECONOMETRICS, 2010, 25 (02) : 287 - 307
  • [33] A spatial semiparametric M-quantile regression for hedonic price modelling
    Francesco Schirripa Spagnolo
    Riccardo Borgoni
    Antonella Carcagnì
    Alessandra Michelangeli
    Nicola Salvati
    AStA Advances in Statistical Analysis, 2024, 108 : 159 - 183
  • [34] The absolute health income hypothesis revisited: a semiparametric quantile regression approach
    Sun, Yiguo
    Stengos, Thanasis
    EMPIRICAL ECONOMICS, 2008, 35 (02) : 395 - 412
  • [35] PENALIZED QUANTILE REGRESSION WITH SEMIPARAMETRIC CORRELATED EFFECTS: AN APPLICATION WITH HETEROGENEOUS PREFERENCES
    Harding, Matthew
    Lamarche, Carlos
    JOURNAL OF APPLIED ECONOMETRICS, 2017, 32 (02) : 342 - 358
  • [36] Bayesian quantile semiparametric mixed-effects double regression models
    Zhang, Duo
    Wu, Liucang
    Ye, Keying
    Wang, Min
    STATISTICAL THEORY AND RELATED FIELDS, 2021, 5 (04) : 303 - 315
  • [37] Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk
    Xuejun Jiang
    Yunxian Li
    Aijun Yang
    Ruowei Zhou
    Empirical Economics, 2020, 58 : 2085 - 2103
  • [38] Panel semiparametric quantile regression neural network for electricity consumption forecasting
    Zhou, Xingcai
    Wang, Jiangyan
    Wang, Hongxia
    Lin, Jinguan
    ECOLOGICAL INFORMATICS, 2022, 67
  • [39] Estimating spatial quantile regression with functional coefficients: A robust semiparametric framework
    Lu, Zudi
    Tang, Qingguo
    Cheng, Longsheng
    BERNOULLI, 2014, 20 (01) : 164 - 189
  • [40] A spatial semiparametric M-quantile regression for hedonic price modelling
    Spagnolo, Francesco Schirripa
    Borgoni, Riccardo
    Carcagni, Antonella
    Michelangeli, Alessandra
    Salvati, Nicola
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2024, 108 (01) : 159 - 183