Estimating spatial quantile regression with functional coefficients: A robust semiparametric framework

被引:9
|
作者
Lu, Zudi [1 ]
Tang, Qingguo [2 ]
Cheng, Longsheng [2 ]
机构
[1] Univ Adelaide, Sch Mat Sci, Adelaide, SA 5005, Australia
[2] Nanjing Univ Sci & Technol, Sch Econ & Management, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
asymptotic distributions; functional (varying) coefficient spatial regression; local M-estimators; quantile regression; robust framework; soil data analysis; spatial data; LONGITUDINAL DATA; CROSS-VALIDATION; MODELS;
D O I
10.3150/12-BEJ480
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers an estimation of semiparametric functional (varying)-coefficient quantile regression with spatial data. A general robust framework is developed that treats quantile regression for spatial data in a natural semiparametric way. The local M-estimators of the unknown functional-coefficient functions are proposed by using local linear approximation, and their asymptotic distributions are then established under weak spatial mixing conditions allowing the data processes to be either stationary or nonstationary with spatial trends. Application to a soil data set is demonstrated with interesting findings that go beyond traditional analysis.
引用
收藏
页码:164 / 189
页数:26
相关论文
共 50 条
  • [1] Quantile regression in functional linear semiparametric model
    Tang Qingguo
    Kong, Linglong
    [J]. STATISTICS, 2017, 51 (06) : 1342 - 1358
  • [2] Robust estimation for semiparametric spatial autoregressive models via weighted composite quantile regression
    Tang, Xinrong
    Zhao, Peixin
    Zhou, Xiaoshuang
    Zhang, Weijia
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [3] Estimating value at risk with semiparametric support vector quantile regression
    Shim, Jooyong
    Kim, Yongtae
    Lee, Jangtaek
    Hwang, Changha
    [J]. COMPUTATIONAL STATISTICS, 2012, 27 (04) : 685 - 700
  • [4] Estimating value at risk with semiparametric support vector quantile regression
    Jooyong Shim
    Yongtae Kim
    Jangtaek Lee
    Changha Hwang
    [J]. Computational Statistics, 2012, 27 : 685 - 700
  • [5] Semiparametric quantile regression estimation in dynamic models with partially varying coefficients
    Cai, Zongwu
    Xiao, Zhijie
    [J]. JOURNAL OF ECONOMETRICS, 2012, 167 (02) : 413 - 425
  • [6] Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk
    Xuejun Jiang
    Yunxian Li
    Aijun Yang
    Ruowei Zhou
    [J]. Empirical Economics, 2020, 58 : 2085 - 2103
  • [7] Bayesian semiparametric quantile regression modeling for estimating earthquake fatality risk
    Jiang, Xuejun
    Li, Yunxian
    Yang, Aijun
    Zhou, Ruowei
    [J]. EMPIRICAL ECONOMICS, 2020, 58 (05) : 2085 - 2103
  • [8] A spatial semiparametric M-quantile regression for hedonic price modelling
    Francesco Schirripa Spagnolo
    Riccardo Borgoni
    Antonella Carcagnì
    Alessandra Michelangeli
    Nicola Salvati
    [J]. AStA Advances in Statistical Analysis, 2024, 108 : 159 - 183
  • [9] A spatial semiparametric M-quantile regression for hedonic price modelling
    Spagnolo, Francesco Schirripa
    Borgoni, Riccardo
    Carcagni, Antonella
    Michelangeli, Alessandra
    Salvati, Nicola
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2024, 108 (01) : 159 - 183
  • [10] Semiparametric quantile regression with random censoring
    Francesco Bravo
    [J]. Annals of the Institute of Statistical Mathematics, 2020, 72 : 265 - 295