ON K-CONTACT RIEMANNIAN AND SASAKIAN MANIFOLDS

被引:0
|
作者
MISHRA, RS [1 ]
机构
[1] KUWAIT UNIV,DEPT MATH,KUWAIT CITY,KUWAIT
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:537 / 544
页数:8
相关论文
共 50 条
  • [21] The contact Yamabe flow on K-contact manifolds
    YongBing Zhang
    Science in China Series A: Mathematics, 2009, 52 : 1723 - 1732
  • [22] Examples of simply-connected K-contact non-Sasakian manifolds of dimension 5
    Kim, Jin Hong
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (03)
  • [23] The Structure of a Class of K-contact Manifolds
    J. L. Cabrerizo
    L. M. Fernández
    M. Fernández
    Guo Zhen
    Acta Mathematica Hungarica, 1999, 82 : 331 - 340
  • [24] The structure of a class of K-contact manifolds
    Cabrerizo, JL
    Fernández, LM
    Fernández, M
    Zhen, G
    ACTA MATHEMATICA HUNGARICA, 1999, 82 (04) : 331 - 340
  • [25] Generalized m-quasi-Einstein metric within the framework of Sasakian and K-contact manifolds
    Ghosh, Amalendu
    ANNALES POLONICI MATHEMATICI, 2015, 115 (01) : 33 - 41
  • [26] Stability numbers in K-contact manifolds
    Hurtado, Ana
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (03) : 227 - 243
  • [27] Equivariant cohomology of K-contact manifolds
    Oliver Goertsches
    Hiraku Nozawa
    Dirk Töben
    Mathematische Annalen, 2012, 354 : 1555 - 1582
  • [28] Equivariant cohomology of K-contact manifolds
    Goertsches, Oliver
    Nozawa, Hiraku
    Toeben, Dirk
    MATHEMATISCHE ANNALEN, 2012, 354 (04) : 1555 - 1582
  • [29] INVARIANT SUBMANIFOLDS IN A K-CONTACT RIEMANNIAN MANIFOLD
    ENDO, H
    TENSOR, 1974, 28 (02): : 154 - 156
  • [30] Certain Results on K-Contact and (k, mu)-Contact Manifolds
    Sharma, Ramesh
    JOURNAL OF GEOMETRY, 2008, 89 (1-2) : 138 - 147