Stability numbers in K-contact manifolds

被引:2
|
作者
Hurtado, Ana [1 ]
机构
[1] Univ Jaume 1, Dept Matemat, E-12071 Castellon de La Plana, Spain
关键词
energy; volume; characteristic vector field; K-contact manifold; Hopf vector fields; Berger spheres;
D O I
10.1016/j.difgeo.2008.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the stability of the characteristic vector field of a compact K-contact manifold with respect to the energy and volume functionals when we consider on the manifold a two-parameter variation of the metric. First of all, we multiply the metric in the direction of the characteristic vector field by a constant and then we change the metric by homotheties. We will study to what extent the results obtained in [V. Borrelli, Stability of the characteristic vector field of a Sasakian manifold, Soochow.J. Math. 30 (2004) 283-292. Erratum on the article: Stability of the characteristic vector field of a Sasakian manifold, Soochow J. Math. 32 (2006) 179-180] for Sasakian manifolds are valid for a general K-contact manifold. Finally, as an example, we will study the stability of Hopf vector fields on Berger spheres when we consider homotheties of Berger metrics. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:227 / 243
页数:17
相关论文
共 50 条
  • [1] A generalization of K-contact and (k, μ)-contact manifolds
    Amalendu Ghosh
    Ramesh Sharma
    [J]. Journal of Geometry, 2012, 103 (3) : 431 - 443
  • [2] Localization for K-contact manifolds
    Casselmann, Lana
    Fisher, Jonathan M.
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2019, 17 (04) : 1021 - 1060
  • [3] ON A TYPE OF K-CONTACT MANIFOLDS
    Yildiz, Ahmet
    Ata, Erhan
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 41 (04): : 567 - 571
  • [4] A generalization of K-contact and (k, mu)-contact manifolds
    Ghosh, Amalendu
    Sharma, Ramesh
    [J]. JOURNAL OF GEOMETRY, 2012, 103 (03) : 431 - 443
  • [5] The contact Yamabe flow on K-contact manifolds
    ZHANG YongBing Department of Mathematics
    [J]. Science China Mathematics, 2009, (08) : 1723 - 1732
  • [6] The contact Yamabe flow on K-contact manifolds
    Zhang YongBing
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (08): : 1723 - 1732
  • [7] The contact Yamabe flow on K-contact manifolds
    YongBing Zhang
    [J]. Science in China Series A: Mathematics, 2009, 52 : 1723 - 1732
  • [8] The Structure of a Class of K-contact Manifolds
    J. L. Cabrerizo
    L. M. Fernández
    M. Fernández
    Guo Zhen
    [J]. Acta Mathematica Hungarica, 1999, 82 : 331 - 340
  • [9] The structure of a class of K-contact manifolds
    Cabrerizo, JL
    Fernández, LM
    Fernández, M
    Zhen, G
    [J]. ACTA MATHEMATICA HUNGARICA, 1999, 82 (04) : 331 - 340
  • [10] ON K-CONTACT RIEMANNIAN AND SASAKIAN MANIFOLDS
    MISHRA, RS
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1982, 13 (05): : 537 - 544