The structure of a class of K-contact manifolds

被引:26
|
作者
Cabrerizo, JL
Fernández, LM
Fernández, M
Zhen, G
机构
[1] Univ Sevilla, Fac Matemat, Dept Geometria & Topol, E-41080 Seville, Spain
[2] Yunnan Normal Univ, Dept Math, Kunming 650092, Peoples R China
关键词
Vector Field; Sectional Curvature; Regular Contact; Holomorphic Sectional Curvature; Contact Vector;
D O I
10.1023/A:1006696410826
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a class of K-contact manifolds, namely phi-conformally flat K-contact manifolds and we show that a compact phi-conformally flat K-contact manifold with regular contact vector field is a principal S-1-bundle over an almost Kaehler space of constant holomorphic sectional curvature.
引用
收藏
页码:331 / 340
页数:10
相关论文
共 50 条
  • [1] The Structure of a Class of K-contact Manifolds
    J. L. Cabrerizo
    L. M. Fernández
    M. Fernández
    Guo Zhen
    Acta Mathematica Hungarica, 1999, 82 : 331 - 340
  • [2] The structure of some classes of K-contact manifolds
    Mukut Mani Tripathi
    Mohit Kumar Dwivedi
    Proceedings Mathematical Sciences, 2008, 118 : 371 - 379
  • [3] The structure of some classes of K-contact manifolds
    Tripathi, Mukut Mani
    Dwivedi, Mohit Kumar
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2008, 118 (03): : 371 - 379
  • [4] A generalization of K-contact and (k, μ)-contact manifolds
    Amalendu Ghosh
    Ramesh Sharma
    Journal of Geometry, 2012, 103 (3) : 431 - 443
  • [5] Localization for K-contact manifolds
    Casselmann, Lana
    Fisher, Jonathan M.
    JOURNAL OF SYMPLECTIC GEOMETRY, 2019, 17 (04) : 1021 - 1060
  • [6] ON A TYPE OF K-CONTACT MANIFOLDS
    Yildiz, Ahmet
    Ata, Erhan
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 41 (04): : 567 - 571
  • [7] A generalization of K-contact and (k, mu)-contact manifolds
    Ghosh, Amalendu
    Sharma, Ramesh
    JOURNAL OF GEOMETRY, 2012, 103 (03) : 431 - 443
  • [8] The contact Yamabe flow on K-contact manifolds
    Zhang YongBing
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (08): : 1723 - 1732
  • [9] The contact Yamabe flow on K-contact manifolds
    ZHANG YongBing Department of Mathematics
    Science China Mathematics, 2009, (08) : 1723 - 1732
  • [10] The contact Yamabe flow on K-contact manifolds
    YongBing Zhang
    Science in China Series A: Mathematics, 2009, 52 : 1723 - 1732