ON A TYPE OF K-CONTACT MANIFOLDS

被引:0
|
作者
Yildiz, Ahmet [1 ]
Ata, Erhan [1 ]
机构
[1] Dumlupinar Univ, Art & Sci Fac, Dept Math, Kutahya, Turkey
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2012年 / 41卷 / 04期
关键词
K-contact manifolds; Harmonic curvature tensor; Harmonic conformal curvature; Einstein manifold; Cyclic parallel Ricci tensor;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we generalize the results of Tanno and Zhen. Then we study the cyclic parallel Ricci tensor on a K-contact manifold.
引用
收藏
页码:567 / 571
页数:5
相关论文
共 50 条
  • [1] A generalization of K-contact and (k, μ)-contact manifolds
    Amalendu Ghosh
    Ramesh Sharma
    Journal of Geometry, 2012, 103 (3) : 431 - 443
  • [2] Localization for K-contact manifolds
    Casselmann, Lana
    Fisher, Jonathan M.
    JOURNAL OF SYMPLECTIC GEOMETRY, 2019, 17 (04) : 1021 - 1060
  • [3] A generalization of K-contact and (k, mu)-contact manifolds
    Ghosh, Amalendu
    Sharma, Ramesh
    JOURNAL OF GEOMETRY, 2012, 103 (03) : 431 - 443
  • [4] The contact Yamabe flow on K-contact manifolds
    Zhang YongBing
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (08): : 1723 - 1732
  • [5] The contact Yamabe flow on K-contact manifolds
    ZHANG YongBing Department of Mathematics
    Science China Mathematics, 2009, (08) : 1723 - 1732
  • [6] The contact Yamabe flow on K-contact manifolds
    YongBing Zhang
    Science in China Series A: Mathematics, 2009, 52 : 1723 - 1732
  • [7] The Structure of a Class of K-contact Manifolds
    J. L. Cabrerizo
    L. M. Fernández
    M. Fernández
    Guo Zhen
    Acta Mathematica Hungarica, 1999, 82 : 331 - 340
  • [8] The structure of a class of K-contact manifolds
    Cabrerizo, JL
    Fernández, LM
    Fernández, M
    Zhen, G
    ACTA MATHEMATICA HUNGARICA, 1999, 82 (04) : 331 - 340
  • [9] Stability numbers in K-contact manifolds
    Hurtado, Ana
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (03) : 227 - 243
  • [10] Equivariant cohomology of K-contact manifolds
    Oliver Goertsches
    Hiraku Nozawa
    Dirk Töben
    Mathematische Annalen, 2012, 354 : 1555 - 1582