CROSSOVER AND FINITE-SIZE EFFECTS IN THE (1 + 1)-DIMENSIONAL KARDAR-PARISI-ZHANG EQUATION

被引:22
|
作者
FORREST, BM
TORAL, R
机构
[1] Departament de Física, Universität de les Illes Balears, Palma de Mallorca
关键词
SURFACE GROWTH; CROSSOVER EFFECTS; FINITE-SIZE SCALING; NUMERICAL INTEGRATION; STOCHASTIC DIFFERENTIAL EQUATIONS;
D O I
10.1007/BF01053591
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Crossover scaling of the surface width in the Kardar Parisi-Zhang equation for surface growth is studied numerically. By means of a perturbative solution of the discretized equation and by comparison with the exact solution of the corresponding linear equation, the finite-size effects due to the spatial discretization are carefully analyzed. The dependence on the nonlinearity of both the finite-size and asymptotic scaling forms is then investigated.
引用
收藏
页码:703 / 720
页数:18
相关论文
共 50 条
  • [41] Depinning transition of the quenched Kardar-Parisi-Zhang equation
    Lee, C
    Kim, JM
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 47 (01) : 13 - 17
  • [42] NUMERICAL-SIMULATION OF THE KARDAR-PARISI-ZHANG EQUATION
    BECCARIA, M
    CURCI, G
    PHYSICAL REVIEW E, 1994, 50 (06) : 4560 - 4563
  • [43] Jointly invariant measures for the Kardar-Parisi-Zhang equation
    Groathouse, Sean
    Rassoul-Agha, Firas
    Seppalainen, Timo
    Sorensen, Evan
    PROBABILITY THEORY AND RELATED FIELDS, 2025,
  • [44] Strong coupling probe for the Kardar-Parisi-Zhang equation
    Newman, TJ
    Kallabis, H
    JOURNAL DE PHYSIQUE I, 1996, 6 (03): : 373 - 383
  • [45] Nonperturbative Renormalization Group for the Kardar-Parisi-Zhang Equation
    Canet, Leonie
    Chate, Hugues
    Delamotte, Bertrand
    Wschebor, Nicolas
    PHYSICAL REVIEW LETTERS, 2010, 104 (15)
  • [46] Critical behavior of a bounded Kardar-Parisi-Zhang equation
    Muñoz, MA
    de los Santos, F
    Achahbar, A
    BRAZILIAN JOURNAL OF PHYSICS, 2003, 33 (03) : 443 - 449
  • [47] The Kardar-Parisi-Zhang equation and its matrix generalization
    Bork, L. V.
    Ogarkov, S. L.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2014, 178 (03) : 359 - 373
  • [48] Finite-Temperature Free Fermions and the Kardar-Parisi-Zhang Equation at Finite Time
    Dean, David S.
    Le Doussal, Pierre
    Majumdar, Satya N.
    Schehr, Gregory
    PHYSICAL REVIEW LETTERS, 2015, 114 (11)
  • [49] Minimum action method for the Kardar-Parisi-Zhang equation
    Fogedby, Hans C.
    Ren, Weiqing
    PHYSICAL REVIEW E, 2009, 80 (04)
  • [50] Lattice duality for the compact Kardar-Parisi-Zhang equation
    Sieberer, L. M.
    Wachtel, G.
    Altman, E.
    Diehl, S.
    PHYSICAL REVIEW B, 2016, 94 (10)