Strong coupling probe for the Kardar-Parisi-Zhang equation

被引:0
|
作者
Newman, TJ [1 ]
Kallabis, H [1 ]
机构
[1] FORSCHUNGSZENTRUM JULICH,HOCHSTLEISTUNGSRECHENZENTRUM,D-52425 JULICH,GERMANY
来源
JOURNAL DE PHYSIQUE I | 1996年 / 6卷 / 03期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an exact solution of the deterministic Kardar-Parisi-Zhang (KPZ) equation under the influence of a local driving force f. For substrate dimension d less than or equal to 2 we recover the well-known result that for arbitrarily small f > 0, the interface develops a non-zero velocity v(f). Novel behaviour is found in the strong-coupling regime for d > 2, in which f must exceed a critical force f(c) in order to drive the interface with constant velocity. We find v(f) similar to (f - f(c))(alpha(d)) for f SE arrow f(c). In particular, the exponent alpha(d) = 2/(d-2) for 2 < d < 4, but saturates at alpha(d) = 1 for d > 4, indicating that for this simple problem, there exists a finite upper critical dimension d(u) = 4. For d > 2 the surface distortion caused by the applied force scales logarithmically with distance within a critical radius R(c) similar to (f - f(c))(-v(d)) = where v(d) = alpha(d)/2. Connections between these results, and the critical properties of the weak/strong-coupling transition in the noisy KPZ equation are pursued.
引用
收藏
页码:373 / 383
页数:11
相关论文
共 50 条
  • [1] Strong-coupling phases of the anisotropic Kardar-Parisi-Zhang equation
    Kloss, Thomas
    Canet, Leonie
    Wschebor, Nicolas
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [2] Patterns in the Kardar-Parisi-Zhang equation
    Fogedby, Hans C.
    PRAMANA-JOURNAL OF PHYSICS, 2008, 71 (02): : 253 - 262
  • [3] Heuristic approach to the strong-coupling regime of the Kardar-Parisi-Zhang equation
    Stepanow, S
    PHYSICAL REVIEW E, 1997, 55 (05) : R4853 - R4856
  • [4] Patterns in the Kardar-Parisi-Zhang equation
    Hans C. Fogedby
    Pramana, 2008, 71 : 253 - 262
  • [5] GENERALIZATIONS OF THE KARDAR-PARISI-ZHANG EQUATION
    DOHERTY, JP
    MOORE, MA
    KIM, JM
    BRAY, AJ
    PHYSICAL REVIEW LETTERS, 1994, 72 (13) : 2041 - 2044
  • [6] ON THE RENORMALIZATION OF THE KARDAR-PARISI-ZHANG EQUATION
    LASSIG, M
    NUCLEAR PHYSICS B, 1995, 448 (03) : 559 - 574
  • [7] Kardar-Parisi-Zhang Equation and Universality
    Comets, Francis
    DIRECTED POLYMERS IN RANDOM ENVIRONMENTS: ECOLE D ETE DE PROBABILITES DE SAINT-FLOUR XLVI - 2016, 2017, 2175 : 127 - 146
  • [8] TOWARDS DESCRIBING THE STRONG-COUPLING REGIME OF THE KARDAR-PARISI-ZHANG (KPZ) EQUATION
    STEPANOW, S
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (45) : L605 - L609
  • [9] Generalized discretization of the Kardar-Parisi-Zhang equation
    Buceta, RC
    PHYSICAL REVIEW E, 2005, 72 (01):
  • [10] Sinc noise for the Kardar-Parisi-Zhang equation
    Niggemann, Oliver
    Hinrichsen, Haye
    PHYSICAL REVIEW E, 2018, 97 (06)