Strong coupling probe for the Kardar-Parisi-Zhang equation

被引:0
|
作者
Newman, TJ [1 ]
Kallabis, H [1 ]
机构
[1] FORSCHUNGSZENTRUM JULICH,HOCHSTLEISTUNGSRECHENZENTRUM,D-52425 JULICH,GERMANY
来源
JOURNAL DE PHYSIQUE I | 1996年 / 6卷 / 03期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an exact solution of the deterministic Kardar-Parisi-Zhang (KPZ) equation under the influence of a local driving force f. For substrate dimension d less than or equal to 2 we recover the well-known result that for arbitrarily small f > 0, the interface develops a non-zero velocity v(f). Novel behaviour is found in the strong-coupling regime for d > 2, in which f must exceed a critical force f(c) in order to drive the interface with constant velocity. We find v(f) similar to (f - f(c))(alpha(d)) for f SE arrow f(c). In particular, the exponent alpha(d) = 2/(d-2) for 2 < d < 4, but saturates at alpha(d) = 1 for d > 4, indicating that for this simple problem, there exists a finite upper critical dimension d(u) = 4. For d > 2 the surface distortion caused by the applied force scales logarithmically with distance within a critical radius R(c) similar to (f - f(c))(-v(d)) = where v(d) = alpha(d)/2. Connections between these results, and the critical properties of the weak/strong-coupling transition in the noisy KPZ equation are pursued.
引用
收藏
页码:373 / 383
页数:11
相关论文
共 50 条
  • [21] Nonlocal effects in the conserved Kardar-Parisi-Zhang equation
    Jung, Y
    Kim, IM
    PHYSICAL REVIEW E, 2000, 62 (02): : 2949 - 2951
  • [22] Anomaly in numerical integrations of the Kardar-Parisi-Zhang equation
    Lam, CH
    Shin, FG
    PHYSICAL REVIEW E, 1998, 57 (06): : 6506 - 6511
  • [23] Upper critical dimension of the Kardar-Parisi-Zhang equation
    Bhattacharjee, JK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (05): : L93 - L96
  • [24] Upper critical dimension of the Kardar-Parisi-Zhang equation
    Schwartz, Moshe
    Perlsman, Ehud
    PHYSICAL REVIEW E, 2012, 85 (05):
  • [25] Exact Solution for the Stationary Kardar-Parisi-Zhang Equation
    Imamura, Takashi
    Sasamoto, Tomohiro
    PHYSICAL REVIEW LETTERS, 2012, 108 (19)
  • [26] Jointly invariant measures for the Kardar-Parisi-Zhang equation
    Groathouse, Sean
    Rassoul-Agha, Firas
    Seppalainen, Timo
    Sorensen, Evan
    PROBABILITY THEORY AND RELATED FIELDS, 2025,
  • [27] Depinning transition of the quenched Kardar-Parisi-Zhang equation
    Lee, C
    Kim, JM
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 47 (01) : 13 - 17
  • [28] NUMERICAL-SIMULATION OF THE KARDAR-PARISI-ZHANG EQUATION
    BECCARIA, M
    CURCI, G
    PHYSICAL REVIEW E, 1994, 50 (06) : 4560 - 4563
  • [29] Nonperturbative Renormalization Group for the Kardar-Parisi-Zhang Equation
    Canet, Leonie
    Chate, Hugues
    Delamotte, Bertrand
    Wschebor, Nicolas
    PHYSICAL REVIEW LETTERS, 2010, 104 (15)
  • [30] Critical behavior of a bounded Kardar-Parisi-Zhang equation
    Muñoz, MA
    de los Santos, F
    Achahbar, A
    BRAZILIAN JOURNAL OF PHYSICS, 2003, 33 (03) : 443 - 449