Strong coupling probe for the Kardar-Parisi-Zhang equation

被引:0
|
作者
Newman, TJ [1 ]
Kallabis, H [1 ]
机构
[1] FORSCHUNGSZENTRUM JULICH,HOCHSTLEISTUNGSRECHENZENTRUM,D-52425 JULICH,GERMANY
来源
JOURNAL DE PHYSIQUE I | 1996年 / 6卷 / 03期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an exact solution of the deterministic Kardar-Parisi-Zhang (KPZ) equation under the influence of a local driving force f. For substrate dimension d less than or equal to 2 we recover the well-known result that for arbitrarily small f > 0, the interface develops a non-zero velocity v(f). Novel behaviour is found in the strong-coupling regime for d > 2, in which f must exceed a critical force f(c) in order to drive the interface with constant velocity. We find v(f) similar to (f - f(c))(alpha(d)) for f SE arrow f(c). In particular, the exponent alpha(d) = 2/(d-2) for 2 < d < 4, but saturates at alpha(d) = 1 for d > 4, indicating that for this simple problem, there exists a finite upper critical dimension d(u) = 4. For d > 2 the surface distortion caused by the applied force scales logarithmically with distance within a critical radius R(c) similar to (f - f(c))(-v(d)) = where v(d) = alpha(d)/2. Connections between these results, and the critical properties of the weak/strong-coupling transition in the noisy KPZ equation are pursued.
引用
收藏
页码:373 / 383
页数:11
相关论文
共 50 条
  • [41] Facet formation in the negative quenched Kardar-Parisi-Zhang equation
    Center for Theoretical Physics, Department of Physics, Seoul National University, Seoul 151-742, Korea, Republic of
    不详
    Phys Rev E., 2 PART A (1570-1573):
  • [42] Effects of memory on scaling behaviour of Kardar-Parisi-Zhang equation
    Tang Gang
    Hao Da-Peng
    Xia Hui
    Han Kui
    Xun Zhi-Peng
    CHINESE PHYSICS B, 2010, 19 (10)
  • [44] Nonlocal Kardar-Parisi-Zhang equation to model interface growth
    Kechagia, P
    Yortsos, YC
    Lichtner, P
    PHYSICAL REVIEW E, 2001, 64 (01):
  • [45] Comment on "Upper critical dimension of the Kardar-Parisi-Zhang equation"
    Ala-Nissila, T
    PHYSICAL REVIEW LETTERS, 1998, 80 (04) : 887 - 887
  • [46] A modified Kardar-Parisi-Zhang model
    Da Prato, Giuseppe
    Debussche, Arnaud
    Tubaro, Luciano
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 442 - 453
  • [47] Effects of memory on scaling behaviour of Kardar-Parisi-Zhang equation
    唐刚
    郝大鹏
    夏辉
    韩奎
    寻之朋
    Chinese Physics B, 2010, 19 (10) : 171 - 177
  • [48] Facet formation in the negative quenched Kardar-Parisi-Zhang equation
    Jeong, H
    Kahng, B
    Kim, D
    PHYSICAL REVIEW E, 1999, 59 (02) : 1570 - 1573
  • [49] Half-Space Stationary Kardar-Parisi-Zhang Equation
    Barraquand, Guillaume
    Krajenbrink, Alexandre
    Le Doussal, Pierre
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (04) : 1149 - 1203
  • [50] Scaling analysis of the anisotropic nonlocal Kardar-Parisi-Zhang equation
    Tang, G
    Ma, BK
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 310 (1-2) : 1 - 6