CROSSOVER AND FINITE-SIZE EFFECTS IN THE (1 + 1)-DIMENSIONAL KARDAR-PARISI-ZHANG EQUATION

被引:22
|
作者
FORREST, BM
TORAL, R
机构
[1] Departament de Física, Universität de les Illes Balears, Palma de Mallorca
关键词
SURFACE GROWTH; CROSSOVER EFFECTS; FINITE-SIZE SCALING; NUMERICAL INTEGRATION; STOCHASTIC DIFFERENTIAL EQUATIONS;
D O I
10.1007/BF01053591
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Crossover scaling of the surface width in the Kardar Parisi-Zhang equation for surface growth is studied numerically. By means of a perturbative solution of the discretized equation and by comparison with the exact solution of the corresponding linear equation, the finite-size effects due to the spatial discretization are carefully analyzed. The dependence on the nonlinearity of both the finite-size and asymptotic scaling forms is then investigated.
引用
收藏
页码:703 / 720
页数:18
相关论文
共 50 条
  • [21] GLASSY SOLUTIONS OF THE KARDAR-PARISI-ZHANG EQUATION
    MOORE, MA
    BLUM, T
    DOHERTY, JP
    MARSILI, M
    PHYSICAL REVIEW LETTERS, 1995, 74 (21) : 4257 - 4260
  • [22] Pseudospectral method for the Kardar-Parisi-Zhang equation
    Giada, L
    Giacometti, A
    Rossi, M
    PHYSICAL REVIEW E, 2002, 65 (03):
  • [23] Improved discretization of the Kardar-Parisi-Zhang equation
    Lam, CH
    Shin, FG
    PHYSICAL REVIEW E, 1998, 58 (05): : 5592 - 5595
  • [24] Effects of memory on scaling behaviour of Kardar-Parisi-Zhang equation
    Tang Gang
    Hao Da-Peng
    Xia Hui
    Han Kui
    Xun Zhi-Peng
    CHINESE PHYSICS B, 2010, 19 (10)
  • [25] Superdiffusivity of the 1D Lattice Kardar-Parisi-Zhang Equation
    Sasamoto, Tomohiro
    Spohn, Herbert
    JOURNAL OF STATISTICAL PHYSICS, 2009, 137 (5-6) : 917 - 935
  • [26] Zero Tension Kardar-Parisi-Zhang Equation in (d + 1)–Dimensions
    A. Bahraminasab
    S. M. A. Tabei
    A. A. Masoudi
    F. Shahbazi
    M. Reza Rahimi Tabar
    Journal of Statistical Physics, 2004, 116 : 1521 - 1544
  • [27] THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS
    Quastel, J. D.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 113 - 133
  • [28] Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model
    Odor, Geza
    Kelling, Jeffrey
    Gemming, Sibylle
    PHYSICAL REVIEW E, 2014, 89 (03)
  • [29] Numerical study of the Kardar-Parisi-Zhang equation
    Miranda, Vladimir G.
    Reis, Fabio D. A. Aarao
    PHYSICAL REVIEW E, 2008, 77 (03):
  • [30] Kardar-Parisi-Zhang equation and the delta expansion
    Paul, I
    Tewari, S
    Bhattacharjee, JK
    PHYSICAL REVIEW E, 1997, 55 (03) : R2097 - R2099