On Agglomerative Hierarchical Clustering Using Clusterwise Tolerance Based Pairwise Constraints

被引:2
|
作者
Hamasuna, Yukihiro [1 ]
Endo, Yasunori [2 ]
Miyamoto, Sadaaki [2 ]
机构
[1] Kinki Univ, Sch Sci & Engn, Dept Informat, 3-4-1 Kowakae, Higashiosaka, Osaka 5778502, Japan
[2] Univ Tsukuba, Fac Syst & Informat Engn, Dept Risk Engn, Tsukuba, Ibaraki 3058573, Japan
基金
日本学术振兴会;
关键词
semi-supervised clustering; agglomerative hierarchical clustering; centroid method; clusterwise tolerance; pairwise constraints;
D O I
10.20965/jaciii.2012.p0174
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents semi-supervised agglomerative hierarchical clustering algorithm using clusterwise tolerance based pairwise constraints. In semi-supervised clustering, pairwise constraints, that is, must-link and cannot-link, are frequently used in order to improve clustering properties. From that sense, we will propose another way named clusterwise tolerance based pairwise constraints to handle must-link and cannot-link constraints in L-2-space. In addition, we will propose semi-supervised agglomerative hierarchical clustering algorithm based on it. We will, moreover, show the effectiveness of the proposed method through numerical examples.
引用
收藏
页码:174 / 179
页数:6
相关论文
共 50 条
  • [31] Refinement Properties in Agglomerative Hierarchical Clustering
    Miyamoto, Sadaaki
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5861 : 259 - 267
  • [32] Learning the threshold in hierarchical agglomerative clustering
    Daniels, Kristine
    Giraud-Carrier, Christophe
    ICMLA 2006: 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2006, : 270 - +
  • [33] Geometric algorithms for agglomerative hierarchical clustering
    Chen, DZ
    Xu, B
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2003, 2697 : 30 - 39
  • [34] Clustering Acoustic Segments Using Multi-Stage Agglomerative Hierarchical Clustering
    Lerato, Lerato
    Niesler, Thomas
    PLOS ONE, 2015, 10 (10):
  • [35] Agglomerative and divisive hierarchical Bayesian clustering
    Burghardt, Elliot
    Sewell, Daniel
    Cavanaugh, Joseph
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 176
  • [36] Horizontal Partitioning of Multimedia Databases Using Hierarchical Agglomerative Clustering
    Rodriguez-Mazahua, Lisbeth
    Alor-Hernandez, Giner
    Antonieta Abud-Figueroa, Ma.
    Gustavo Pelaez-Camarena, S.
    NATURE-INSPIRED COMPUTATION AND MACHINE LEARNING, PT II, 2014, 8857 : 296 - 309
  • [37] Agglomerative hierarchical clustering using new Boolean dissimilarity measures
    González, CG
    Veira Rodriguez, ALB
    De Oliveira, JM
    de Almeida, JLA
    ADVANCES IN INTELLIGENT SYSTEMS AND ROBOTICS, 2003, 101 : 130 - 138
  • [38] Using Hierarchical Agglomerative Clustering to Locate Potential Aspect Interference
    Bennett, Brian T.
    SOUTHEASTCON 2017, 2017,
  • [39] A Novel Approach for Climate Classification Using Agglomerative Hierarchical Clustering
    Uppalapati, Sanketh
    Garg, Vishal
    Pudi, Vikram
    Mathur, Jyotirmay
    Gupta, Raj
    Bhatia, Aviruch
    ENERGY INFORMATICS, EI.A 2023, PT I, 2024, 14467 : 152 - 167
  • [40] Order preserving hierarchical agglomerative clustering
    Bakkelund, Daniel
    MACHINE LEARNING, 2022, 111 (05) : 1851 - 1901