Horizontal Partitioning of Multimedia Databases Using Hierarchical Agglomerative Clustering

被引:0
|
作者
Rodriguez-Mazahua, Lisbeth [1 ]
Alor-Hernandez, Giner [1 ]
Antonieta Abud-Figueroa, Ma. [1 ]
Gustavo Pelaez-Camarena, S. [1 ]
机构
[1] Inst Tecnol Orizaba, Div Res & Postgrad Studies, Xalapa, Veracruz, Mexico
关键词
Horizontal partitioning; Multimedia databases; Hierarchical clustering; FRAGMENTATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Horizontal partitioning is a database design technique widely used in relational databases in order to achieve query optimization. Recently, this technique has been applied in multimedia databases to improve query execution cost in these databases. Nevertheless, current algorithms are based on affinity between predicates to obtain an horizontal partitioning scheme (HPS). Affinity measures how a pair of predicates is accessed by the queries ("togetherness"). The main disadvantage of this measure is that it only involves two predicates, and hence does not show the "togetherness" of more than two predicates. In this paper we propose an horizontal partitioning method for multimedia databases which is based on a hierarchical agglomerative clustering algorithm. The main advantage of our method is that it does not use affinity to create the HPS. We present experimental results to clarify the soundness of the proposed method.
引用
收藏
页码:296 / 309
页数:14
相关论文
共 50 条
  • [2] Agglomerative hierarchical clustering technique for partitioning patent dataset
    Smarika
    Mattas, Nisha
    Kalra, Parul
    Mehrotra, Deepti
    [J]. 2015 4TH INTERNATIONAL CONFERENCE ON RELIABILITY, INFOCOM TECHNOLOGIES AND OPTIMIZATION (ICRITO) (TRENDS AND FUTURE DIRECTIONS), 2015,
  • [3] Competence maps using agglomerative hierarchical clustering
    Ahmad Barirani
    Bruno Agard
    Catherine Beaudry
    [J]. Journal of Intelligent Manufacturing, 2013, 24 : 373 - 384
  • [4] Competence maps using agglomerative hierarchical clustering
    Barirani, Ahmad
    Agard, Bruno
    Beaudry, Catherine
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2013, 24 (02) : 373 - 384
  • [5] Customer Segmentation Using Hierarchical Agglomerative Clustering
    Phan Duy Hung
    Nguyen Thi Thuy Lien
    Nguyen Duc Ngoc
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND SYSTEMS (ICISS 2019), 2019, : 33 - 37
  • [6] Semantic Clustering of Functional Requirements Using Agglomerative Hierarchical Clustering
    Salman, Hamzeh Eyal
    Hammad, Mustafa
    Seriai, Abdelhak-Djamel
    Al-Sbou, Ahed
    [J]. INFORMATION, 2018, 9 (09)
  • [7] Scalable Hierarchical Agglomerative Clustering
    Monath, Nicholas
    Dubey, Kumar Avinava
    Guruganesh, Guru
    Zaheer, Manzil
    Ahmed, Amr
    McCallum, Andrew
    Mergen, Gokhan
    Najork, Marc
    Terzihan, Mert
    Tjanaka, Bryon
    Wang, Yuan
    Wu, Yuchen
    [J]. KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1245 - 1255
  • [8] HIERARCHICAL AGGLOMERATIVE CLUSTERING PROCEDURE
    LUKASOVA, A
    [J]. PATTERN RECOGNITION, 1979, 11 (5-6) : 365 - 381
  • [9] Efficient agglomerative hierarchical clustering
    Bouguettaya, Athman
    Yu, Qi
    Liu, Xumin
    Zhou, Xiangmin
    Song, Andy
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (05) : 2785 - 2797
  • [10] Hierarchical Agglomerative Clustering Using Common Neighbours Similarity
    Makrehchi, Masoud
    [J]. 2016 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2016), 2016, : 546 - 551