On Agglomerative Hierarchical Clustering Using Clusterwise Tolerance Based Pairwise Constraints

被引:2
|
作者
Hamasuna, Yukihiro [1 ]
Endo, Yasunori [2 ]
Miyamoto, Sadaaki [2 ]
机构
[1] Kinki Univ, Sch Sci & Engn, Dept Informat, 3-4-1 Kowakae, Higashiosaka, Osaka 5778502, Japan
[2] Univ Tsukuba, Fac Syst & Informat Engn, Dept Risk Engn, Tsukuba, Ibaraki 3058573, Japan
基金
日本学术振兴会;
关键词
semi-supervised clustering; agglomerative hierarchical clustering; centroid method; clusterwise tolerance; pairwise constraints;
D O I
10.20965/jaciii.2012.p0174
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents semi-supervised agglomerative hierarchical clustering algorithm using clusterwise tolerance based pairwise constraints. In semi-supervised clustering, pairwise constraints, that is, must-link and cannot-link, are frequently used in order to improve clustering properties. From that sense, we will propose another way named clusterwise tolerance based pairwise constraints to handle must-link and cannot-link constraints in L-2-space. In addition, we will propose semi-supervised agglomerative hierarchical clustering algorithm based on it. We will, moreover, show the effectiveness of the proposed method through numerical examples.
引用
收藏
页码:174 / 179
页数:6
相关论文
共 50 条
  • [21] Anomaly Detection Using Agglomerative Hierarchical Clustering Algorithm
    Mazarbhuiya, Fokrul Alom
    AlZahrani, Mohammed Y.
    Georgieva, Lilia
    INFORMATION SCIENCE AND APPLICATIONS 2018, ICISA 2018, 2019, 514 : 475 - 484
  • [22] ENHANCING ANT-BASED CLUSTERING USING PAIRWISE CONSTRAINTS
    Yang, Yan
    Chen, Jintan
    Tan, Wei
    INTELLIGENT DECISION MAKING SYSTEMS, VOL. 2, 2010, : 76 - +
  • [23] Model Order Reduction Based on Agglomerative Hierarchical Clustering
    Al-Dabooni, Seaar
    Wunsch, Donald
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (06) : 1881 - 1895
  • [24] A Boltzmann Theory Based Dynamic Agglomerative Hierarchical Clustering
    Li, Gang
    Zhuang, Jian
    Hou, Hongning
    Yu, Dehong
    IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION, 2009, : 96 - 101
  • [25] Development of an efficient hierarchical clustering analysis using an agglomerative clustering algorithm
    Naeem, Arshia
    Rehman, Mariam
    Anjum, Maria
    Asif, Muhammad
    CURRENT SCIENCE, 2019, 117 (06): : 1045 - 1053
  • [26] Applicability and Interpretability of Ward’s Hierarchical Agglomerative Clustering With or Without Contiguity Constraints
    Nathanaël Randriamihamison
    Nathalie Vialaneix
    Pierre Neuvial
    Journal of Classification, 2021, 38 : 363 - 389
  • [27] Applicability and Interpretability of Ward's Hierarchical Agglomerative Clustering With or Without Contiguity Constraints
    Randriamihamison, Nathanael
    Vialaneix, Nathalie
    Neuvial, Pierre
    JOURNAL OF CLASSIFICATION, 2021, 38 (02) : 363 - 389
  • [28] Hierarchical clustering using constraints
    Kant, Mariana
    LeBon, Maurice
    Sankoff, David
    BIOINFORMATICS RESEARCH AND APPLICATIONS, 2008, 4983 : 2 - +
  • [29] Hierarchical subtrees agglomerative clustering algorithms
    Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100022, China
    Beijing Gongye Daxue Xuebao J. Beijing Univ. Technol., 2006, 5 (442-446):
  • [30] Fair Algorithms for Hierarchical Agglomerative Clustering
    Chhabra, Anshuman
    Mohapatra, Prasant
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 206 - 211