Hierarchical subtrees agglomerative clustering algorithms

被引:0
|
作者
Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100022, China [1 ]
机构
来源
关键词
Algorithms - Computer simulation;
D O I
暂无
中图分类号
学科分类号
摘要
In order to solve the problem that Traditional Hierarchical Agglomerative Clustering Algorithms (HACA) may produce a nonunique binary tree as the clustering result of a same dataset, this paper presents Hierarchical Subtrees Agglomerative Clustering Algorithm (HSACA), the basic idea of which is to find maximal θ-distant subtrees in a minimal spanning tree of the data set and merge its vertex set. HSACA can merge many objects into a cluster in each step, and its clustering result is usually a multiple tree. This paper proves in theory that the multiple tree generated by HSACA is unique for a dataset without considering the branchy orders, and shows in computer simulations that the multiple tree describes a more reasonable clustering result than the binary tree generated by traditional HACA if there are many equidistant pairs of points in the data set.
引用
收藏
相关论文
共 50 条
  • [1] Fair Algorithms for Hierarchical Agglomerative Clustering
    Chhabra, Anshuman
    Mohapatra, Prasant
    [J]. 2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 206 - 211
  • [2] Geometric algorithms for agglomerative hierarchical clustering
    Chen, DZ
    Xu, B
    [J]. COMPUTING AND COMBINATORICS, PROCEEDINGS, 2003, 2697 : 30 - 39
  • [3] Constrained Agglomerative Hierarchical Clustering Algorithms with Penalties
    Miyamoto, Sadaaki
    Terami, Akihisa
    [J]. IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 422 - 427
  • [4] A general framework for agglomerative hierarchical clustering algorithms
    Gil-Garcia, Reynaldo J.
    Badia-Contelles, Josd M.
    Pons-Porrata, Aurora
    [J]. 18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 569 - 572
  • [5] Asymmetric Agglomerative Hierarchical Clustering Algorithms and Their Evaluations
    Akinobu Takeuchi
    Takayuki Saito
    Hiroshi Yadohisa
    [J]. Journal of Classification, 2007, 24 : 123 - 143
  • [6] Asymmetric agglomerative hierarchical clustering algorithms and their evaluations
    Takeuchi, Akinobu
    Saito, Takayuki
    Yadohisa, Hiroshi
    [J]. JOURNAL OF CLASSIFICATION, 2007, 24 (01) : 123 - 143
  • [7] Hesitant fuzzy agglomerative hierarchical clustering algorithms
    Zhang, Xiaolu
    Xu, Zeshui
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2015, 46 (03) : 562 - 576
  • [8] A Comparative Study of Divisive and Agglomerative Hierarchical Clustering Algorithms
    Maurice Roux
    [J]. Journal of Classification, 2018, 35 : 345 - 366
  • [9] The impact of isolation kernel on agglomerative hierarchical clustering algorithms
    Han, Xin
    Zhu, Ye
    Ting, Kai Ming
    Li, Gang
    [J]. PATTERN RECOGNITION, 2023, 139
  • [10] A Comparative Study of Divisive and Agglomerative Hierarchical Clustering Algorithms
    Roux, Maurice
    [J]. JOURNAL OF CLASSIFICATION, 2018, 35 (02) : 345 - 366