Constrained Agglomerative Hierarchical Clustering Algorithms with Penalties

被引:0
|
作者
Miyamoto, Sadaaki [1 ]
Terami, Akihisa [2 ]
机构
[1] Univ Tsukuba, Dept Risk Engn, Tsukuba, Ibaraki 3058573, Japan
[2] Univ Tsukuba, Masters Program Risk Engn, Tsukuba, Ibaraki 3058573, Japan
关键词
semi-supervised clustering; pairwise constraints; agglomerative hierarchical clustering;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised clustering with constraints has widely been studied, but there are few studies on constrained agglomerative hierarchical algorithms. We have shown modified kernel algorithms of agglomerative hierarchical clustering, but there is a drawback that the modified kernels are not positive-definite in general. In this paper we consider another idea of agglomerative hierarchical algorithms with pairwise constraints. That is, merging of clusters is with penalties. The centroid method and the Ward method with and without a kernel are considered. Typical numerical examples show effectiveness of the proposed algorithms in generating clusters with nonlinear cluster boundaries. We also compare the results with those by COP K-means, showing that the proposed algorithms outperform the COP K-means.
引用
收藏
页码:422 / 427
页数:6
相关论文
共 50 条
  • [1] Fair Algorithms for Hierarchical Agglomerative Clustering
    Chhabra, Anshuman
    Mohapatra, Prasant
    [J]. 2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 206 - 211
  • [2] Hierarchical subtrees agglomerative clustering algorithms
    Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer Science and Technology, Beijing University of Technology, Beijing 100022, China
    [J]. Beijing Gongye Daxue Xuebao J. Beijing Univ. Technol., 2006, 5 (442-446):
  • [3] Geometric algorithms for agglomerative hierarchical clustering
    Chen, DZ
    Xu, B
    [J]. COMPUTING AND COMBINATORICS, PROCEEDINGS, 2003, 2697 : 30 - 39
  • [4] A general framework for agglomerative hierarchical clustering algorithms
    Gil-Garcia, Reynaldo J.
    Badia-Contelles, Josd M.
    Pons-Porrata, Aurora
    [J]. 18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 569 - 572
  • [5] Hesitant fuzzy agglomerative hierarchical clustering algorithms
    Zhang, Xiaolu
    Xu, Zeshui
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2015, 46 (03) : 562 - 576
  • [6] Asymmetric agglomerative hierarchical clustering algorithms and their evaluations
    Takeuchi, Akinobu
    Saito, Takayuki
    Yadohisa, Hiroshi
    [J]. JOURNAL OF CLASSIFICATION, 2007, 24 (01) : 123 - 143
  • [7] Asymmetric Agglomerative Hierarchical Clustering Algorithms and Their Evaluations
    Akinobu Takeuchi
    Takayuki Saito
    Hiroshi Yadohisa
    [J]. Journal of Classification, 2007, 24 : 123 - 143
  • [8] A Comparative Study of Divisive and Agglomerative Hierarchical Clustering Algorithms
    Maurice Roux
    [J]. Journal of Classification, 2018, 35 : 345 - 366
  • [9] EFFICIENT ALGORITHMS FOR AGGLOMERATIVE HIERARCHICAL-CLUSTERING METHODS
    DAY, WHE
    EDELSBRUNNER, H
    [J]. JOURNAL OF CLASSIFICATION, 1984, 1 (01) : 7 - 24
  • [10] The impact of isolation kernel on agglomerative hierarchical clustering algorithms
    Han, Xin
    Zhu, Ye
    Ting, Kai Ming
    Li, Gang
    [J]. PATTERN RECOGNITION, 2023, 139