ANALYTICAL APPROXIMATE SOLUTIONS OF CERTAIN NONLINEAR EQUATIONS OF REACTION-DIFFUSION KIND

被引:1
|
作者
MARCOS, G [1 ]
TAILLEUR, S [1 ]
BAGAJEWICZ, MJ [1 ]
机构
[1] INTEC,SANTA FE,ARGENTINA
关键词
D O I
10.1016/0895-7177(91)90084-K
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Monotone iterative procedures are used to obtain analytical approximate solutions of a certain family of nonlinear heterogeneous reaction-diffusion problems. Upper and lower bounds are also obtained and used to test the accuracy of the method. Approximate solutions and bounds are obtained solving a sequence of linear PDE systems which are constructed replacing the nonlinear functions present in the original problem by adequate approximating expressions in terms of the independent variables. For the choice of approximating functions made in this paper, the method proves to be useful for engineering applications in the range of parameters where asymptotic solutions are not accurate.
引用
收藏
页码:77 / 88
页数:12
相关论文
共 50 条
  • [21] On Exact Multidimensional Solutions of a Nonlinear System of Reaction-Diffusion Equations
    Kosov, A. A.
    Semenov, E. I.
    [J]. DIFFERENTIAL EQUATIONS, 2018, 54 (01) : 106 - 120
  • [22] Exact solutions of certain nonlinear chemotaxis diffusion reaction equations
    AJAY MISHRA
    R S KAUSHAL
    AWADHESH PRASAD
    [J]. Pramana, 2016, 86 : 1043 - 1053
  • [23] Exact solutions of certain nonlinear chemotaxis diffusion reaction equations
    Mishra, Ajay
    Kaushal, R. S.
    Prasad, Awadhesh
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2016, 86 (05): : 1043 - 1053
  • [24] Cubic autocatalytic reaction-diffusion equations: semi-analytical solutions
    Marchant, TR
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2020): : 873 - 888
  • [26] Approximate analytical solutions of the nonlinear reaction-diffusion-convection problems
    Shidfar, A.
    Babaei, A.
    Molabahrami, A.
    Alinejadmofrad, M.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (1-2) : 261 - 268
  • [27] ON NONLINEAR COUPLED REACTION-DIFFUSION EQUATIONS
    PACHPATTE, BG
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1985, 16 (04) : 297 - 307
  • [28] Nonlinear Nonlocal Reaction-Diffusion Equations
    Rodriguez-Bernal, Anibal
    Sastre-Gomez, Silvia
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 4 : 53 - 61
  • [29] ON THE SOLUTIONS OF FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Singh, Jagdev
    Kumar, Devendra
    Rathore, Sushila
    [J]. MATEMATICHE, 2013, 68 (01): : 23 - 32
  • [30] Efficient approximation of the solution of certain nonlinear reaction-diffusion equations with small absorption
    Dratman, Ezequiel
    [J]. JOURNAL OF COMPLEXITY, 2013, 29 (3-4) : 263 - 282