Cubic autocatalytic reaction-diffusion equations: semi-analytical solutions

被引:30
|
作者
Marchant, TR [1 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
[2] Univ Coll, ADFA, Sch Math & Stat, Canberra, ACT, Australia
关键词
reaction-diffusion equations; Gray-Scott model; singularity theory; Hopf bifurcations; semi-analytical solutions;
D O I
10.1098/rspa.2001.0899
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Gray-Scott model of cubic-autocatalysis with linear decay is coupled with diffusion and considered in a one-dimensional reactor (a reaction-diffusion cell). The boundaries of the reactor are permeable, so diffusion occurs from external reservoirs that contain fixed concentrations of the reactant and catalyst. The Galerkin method is used to approximate the spatial structure of the reactant and autocatalyst concentrations in the reactor. Ordinary differential equations are then obtained as an approximation to the governing partial differential equations. The ordinary differential equations are then analysed to obtain semi-analytical results for the reaction-diffusion cell. Steady-state concentration profiles and bifurcation diagrams are obtained both explicitly, for the one-term method, and as the solution to a pair of transcendental equations, for the two-term method. Singularity theory is used to determine the regions of parameter space in which the four main types of bifurcation diagram occur. Also, in the semi-analytical model, a fifth bifurcation diagram occurs in an extremely small parameter region; its size being O(10(-13)). The region of parameter space, in which Hopf bifurcations can occur, is found by a local stability analysis of the semi-analytical model. An example of a stable limit-cycle is also considered in detail. The usefulness and accuracy of the semi-analytical results are confirmed by comparison with numerical solutions of the governing partial differential equations.
引用
收藏
页码:873 / 888
页数:16
相关论文
共 50 条
  • [1] Mixed quadratic-cubic autocatalytic reaction-diffusion equations: Semi-analytical solutions
    Alharthi, M. R.
    Marchant, T. R.
    Nelson, M. I.
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (21-22) : 5160 - 5173
  • [2] Semi-analytical solutions for cubic autocatalytic reaction-diffusion equations; the effect of a precursor chemical
    Alharthi, M. R.
    Marchant, T. R.
    Nelson, M. I.
    ANZIAM JOURNAL, 2011, 53 : C511 - C524
  • [3] Cubic autocatalysis in a reaction-diffusion annulus: semi-analytical solutions
    Alharthi, M. R.
    Marchant, T. R.
    Nelson, M. I.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [4] SEMI-ANALYTICAL SOLUTIONS FOR THE BRUSSELATOR REACTION-DIFFUSION MODEL
    Alfifi, H. Y.
    ANZIAM JOURNAL, 2017, 59 (02): : 167 - 182
  • [5] Cubic autocatalysis in a reaction–diffusion annulus: semi-analytical solutions
    M. R. Alharthi
    T. R. Marchant
    M. I. Nelson
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [6] Cubic autocatalysis with Michaelis-Menten kinetics: semi-analytical solutions for the reaction-diffusion cell
    Marchant, TR
    CHEMICAL ENGINEERING SCIENCE, 2004, 59 (16) : 3433 - 3440
  • [7] Semi-analytical solutions of the Schnakenberg model of a reaction-diffusion cell with feedback
    Al Noufaey, K. S.
    RESULTS IN PHYSICS, 2018, 9 : 609 - 614
  • [8] Semi-Analytical Source Method for Reaction-Diffusion Problems
    Cole, K. D.
    Cetin, B.
    Demirel, Y.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2018, 140 (06):
  • [9] Non-smooth feedback control for Belousov-Zhabotinskii reaction-diffusion equations: semi-analytical solutions
    Alfifi, H. Y.
    Marchant, T. R.
    Nelson, M. I.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2016, 54 (08) : 1632 - 1657
  • [10] A semi-analytical approach for the reversible Schnakenberg reaction-diffusion system
    Al Noufaey, K. S.
    RESULTS IN PHYSICS, 2020, 16