Module decompositions via Rickart modules

被引:0
|
作者
Harmanci, A. [1 ]
Ungor, B. [2 ]
机构
[1] Hacettepe Univ, Dept Math, Ankara, Turkey
[2] Ankara Univ, Dept Math, Ankara, Turkey
来源
ALGEBRA & DISCRETE MATHEMATICS | 2018年 / 26卷 / 01期
关键词
Soc(.)-inverse split module; Rad(.)-inverse split module; Rickart module;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module M has decompositions M = Soc(M) circle plus N and M = Rad(M) circle plus K where N and K are Rickart if and only if M is Soc(M)-inverse split and Rad(M)-inverse split, respectively. Right Soc(.)-inverse split left perfect rings and semiprimitive right hereditary rings are determined exactly. Also, some characterizations for a ring R which has a decomposition R = Soc(R-R) circle plus I with I a hereditary Rickart module are obtained.
引用
收藏
页码:47 / 64
页数:18
相关论文
共 50 条