Module decompositions via Rickart modules

被引:0
|
作者
Harmanci, A. [1 ]
Ungor, B. [2 ]
机构
[1] Hacettepe Univ, Dept Math, Ankara, Turkey
[2] Ankara Univ, Dept Math, Ankara, Turkey
来源
ALGEBRA & DISCRETE MATHEMATICS | 2018年 / 26卷 / 01期
关键词
Soc(.)-inverse split module; Rad(.)-inverse split module; Rickart module;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module M has decompositions M = Soc(M) circle plus N and M = Rad(M) circle plus K where N and K are Rickart if and only if M is Soc(M)-inverse split and Rad(M)-inverse split, respectively. Right Soc(.)-inverse split left perfect rings and semiprimitive right hereditary rings are determined exactly. Also, some characterizations for a ring R which has a decomposition R = Soc(R-R) circle plus I with I a hereditary Rickart module are obtained.
引用
收藏
页码:47 / 64
页数:18
相关论文
共 50 条
  • [21] Strongly lifting modules and strongly dual Rickart modules
    Wang, Yongduo
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (01) : 219 - 229
  • [22] T-DUAL RICKART MODULES
    Atani, S. Ebrahimi
    Khoramdel, M.
    Hesari, S. Dolati Pish
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (03) : 627 - 642
  • [23] ON WEAK DUAL RICKART MODULES AND DUAL BAER MODULES
    Tribak, Rachid
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (08) : 3190 - 3206
  • [24] Strongly lifting modules and strongly dual Rickart modules
    Yongduo Wang
    Frontiers of Mathematics in China, 2017, 12 : 219 - 229
  • [25] DUAL RICKART (BAER) MODULES AND PRERADICALS
    Asgari, S.
    Talebi, Y.
    Hamzekolaee, A. r. moniri
    JOURNAL OF ALGEBRAIC SYSTEMS, 2024, 12 (01):
  • [26] F-CS-RICKART MODULES
    Kaewwangsakoon, Julalak
    Pianskool, Sajee
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2020, 45 (01): : 29 - 54
  • [27] (Ω)under-tilde-RICKART MODULES
    Lee, Gangyong
    Rizvi, S. Tariq
    Roman, Cosmin S.
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (05) : 2124 - 2151
  • [28] Rickart and Dual Rickart Objects in Abelian Categories: Transfer via Functors
    Crivei, Septimiu
    Olteanu, Gabriela
    APPLIED CATEGORICAL STRUCTURES, 2018, 26 (04) : 681 - 698
  • [29] Deep decompositions of modules
    McAdam, S
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (12) : 3953 - 3967
  • [30] Modules with perfect decompositions
    Angeleri Hugel, Lidia
    Saorin, Manuel
    MATHEMATICA SCANDINAVICA, 2006, 98 (01) : 19 - 43