MULTIFRACTAL FORMALISM FOR FUNCTIONS

被引:0
|
作者
JAFFARD, S
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the multifractal formalism for functions generally only yields an upper bound for the spectrum of singularities, but it is exact for selfsimilar functions.
引用
收藏
页码:745 / 750
页数:6
相关论文
共 50 条
  • [41] VALIDITY of the multifractal formalism under the box condition
    Bahroun, Fadhila
    CHAOS SOLITONS & FRACTALS, 2015, 77 : 64 - 71
  • [42] A Multifractal Formalism for Hewitt-Stromberg Measures
    Attia, Najmeddine
    Selmi, Bilel
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) : 825 - 862
  • [43] Application of the microcanonical multifractal formalism to monofractal systems
    Pont, Oriol
    Turiel, Antonio
    Perez-Vicente, Conrad J.
    PHYSICAL REVIEW E, 2006, 74 (06):
  • [44] Multifractal formalism for self-similar bridges
    Huillet, T
    Jannet, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (11): : 2567 - 2590
  • [45] Baire generic results for the anisotropic multifractal formalism
    Mourad Ben Slimane
    Hnia Ben Braiek
    Revista Matemática Complutense, 2016, 29 : 127 - 167
  • [46] A multifractal formalism for new general fractal measures
    Achour, Rim
    Li, Zhiming
    Selmi, Bilel
    Wang, Tingting
    CHAOS SOLITONS & FRACTALS, 2024, 181
  • [47] Multifractal spectra and multifractal zeta-functions
    V. Mijović
    L. Olsen
    Aequationes mathematicae, 2017, 91 : 21 - 82
  • [48] Multifractal spectra and multifractal zeta-functions
    Mijovic, V.
    Olsen, L.
    AEQUATIONES MATHEMATICAE, 2017, 91 (01) : 21 - 82
  • [49] The Multifractal Formalism for Measures, Review and Extension to Mixed Cases
    Mohamed Menceur
    Anouar Ben Mabrouk
    Kamel Betina
    Analysis in Theory and Applications, 2016, 32 (04) : 303 - 332
  • [50] On multifractal formalism for self-similar measures with overlaps
    Julien Barral
    De-Jun Feng
    Mathematische Zeitschrift, 2021, 298 : 359 - 383