ON THE CONTAINMENT CONDITION FOR ADAPTIVE MARKOV CHAIN MONTE CARLO ALGORITHMS

被引:0
|
作者
Bai, Yan [1 ]
Roberts, Gareth O. [2 ]
Rosenthal, Jeffrey S. [1 ]
机构
[1] Univ Toronto, Dept Stat, Toronto, ON M5S 3G3, Canada
[2] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
基金
加拿大自然科学与工程研究理事会;
关键词
Markov chain Monte Carlo; adaptive algorithms; ergodicity; diminishing adaptation; Containment;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers ergodicity properties of certain adaptive Markov chain Monte Carlo (MCMC) algorithms for multidimensional target distributions. It was previously shown in [23] that Diminishing Adaptation and Containment imply ergodicity of adaptive MCMC. We derive various sufficient conditions to ensure Containment.
引用
收藏
页码:1 / 54
页数:54
相关论文
共 50 条
  • [21] Markov Chain Monte Carlo Algorithms for Lattice Gaussian Sampling
    Wang, Zheng
    Ling, Cong
    Hanrot, Guillaume
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1489 - 1493
  • [22] Multiple projection Markov chain Monte Carlo algorithms on submanifolds
    Lelievre, Tony
    Stoltz, Gabriel
    Zhang, Wei
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (02) : 737 - 788
  • [23] Convergence of concurrent Markov chain Monte-Carlo algorithms
    K.U. Leuven, Heverlee, Belgium
    Concurrency Pract Exper, 3 (167-189):
  • [24] Compiling Markov Chain Monte Carlo Algorithms for Probabilistic Modeling
    Huang, Daniel
    Tristan, Jean-Baptiste
    Morrisett, Greg
    ACM SIGPLAN NOTICES, 2017, 52 (06) : 111 - 125
  • [25] Adaptive Markov Chain Monte Carlo for Bayesian Variable Selection
    Ji, Chunlin
    Schmidler, Scott C.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (03) : 708 - 728
  • [26] Markov Chain Monte Carlo on optimal adaptive sampling selections
    Chang-Tai Chao
    Environmental and Ecological Statistics, 2003, 10 : 129 - 151
  • [27] Adaptive Markov chain Monte Carlo sampling and estimation in Mata
    Baker, Matthew J.
    STATA JOURNAL, 2014, 14 (03): : 623 - 661
  • [28] Gradient-based Adaptive Markov Chain Monte Carlo
    Titsias, Michalis K.
    Dellaportas, Petros
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [29] Markov chain Monte Carlo on optimal adaptive sampling selections
    Chao, CT
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2003, 10 (01) : 129 - 151
  • [30] An Adaptive Markov Chain Monte Carlo Method for GARCH Model
    Takaishi, Tetsuya
    COMPLEX SCIENCES, PT 2, 2009, 5 : 1424 - 1434