Gradient-based Adaptive Markov Chain Monte Carlo

被引:0
|
作者
Titsias, Michalis K. [1 ]
Dellaportas, Petros [2 ,3 ,4 ]
机构
[1] DeepMind, London, England
[2] UCL, Dept Stat Sci, London, England
[3] Athens Univ Econ & Business, Dept Stat, Athens, Greece
[4] Alan Turing Inst, London, England
关键词
METROPOLIS ALGORITHMS; ERGODICITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a gradient-based learning method to automatically adapt Markov chain Monte Carlo (MCMC) proposal distributions to intractable targets. We define a maximum entropy regularised objective function, referred to as generalised speed measure, which can be robustly optimised over the parameters of the proposal distribution by applying stochastic gradient optimisation. An advantage of our method compared to traditional adaptive MCMC methods is that the adaptation occurs even when candidate state values are rejected. This is a highly desirable property of any adaptation strategy because the adaptation starts in early iterations even if the initial proposal distribution is far from optimum. We apply the framework for learning multivariate random walk Metropolis and Metropolis-adjusted Langevin proposals with full covariance matrices, and provide empirical evidence that our method can outperform other MCMC algorithms, including Hamiltonian Monte Carlo schemes.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Gradient-Based Markov Chain Monte Carlo for MIMO Detection
    Zhou, Xingyu
    Liang, Le
    Zhang, Jing
    Wen, Chao-Kai
    Jin, Shi
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 7566 - 7581
  • [2] MIMO Detection Using Gradient-Based Markov Chain Monte Carlo Methods
    Zhou, Xingyu
    Liang, Le
    Zhang, Jing
    Wen, Chao-Kai
    Jin, Shi
    [J]. IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 5683 - 5688
  • [3] A Gradient-Based Blocking Markov Chain Monte Carlo Method for Stochastic Inverse Modeling
    Fu, Jianlin
    Gomez-Hernandez, J. Jaime
    Du, Song
    [J]. GEOSTATISTICS VALENCIA 2016, 2017, 19 : 777 - 788
  • [4] Gradient-Based Sequential Markov Chain Monte Carlo for Multitarget Tracking With Correlated Measurements
    Lamberti, Roland
    Septier, Francois
    Salman, Naveed
    Mihaylova, Lyudmila
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2018, 4 (03): : 510 - 518
  • [5] Gradient-Based Markov Chain Monte Carlo for Bayesian Inference With Non-differentiable Priors
    Goldman, Jacob Vorstrup
    Sell, Torben
    Singh, Sumeetpal Sidhu
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 2182 - 2193
  • [6] Efficient Bayesian inversion of borehole geophysical measurements with a gradient-based Markov chain Monte Carlo method
    Deng, Tianqi
    Ambia, Joaquin
    Torres-Verdin, Carlos
    [J]. GEOPHYSICAL PROSPECTING, 2023, 71 (03) : 471 - 494
  • [7] A gradient-based Markov chain Monte Carlo method for full-waveform inversion and uncertainty analysis
    Zhao, Zeyu
    Sen, Mrinal K.
    [J]. GEOPHYSICS, 2021, 86 (01) : R15 - R30
  • [8] Stochastic Gradient Markov Chain Monte Carlo
    Nemeth, Christopher
    Fearnhead, Paul
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (533) : 433 - 450
  • [9] On adaptive Markov chain Monte Carlo algorithms
    Atchadé, YF
    Rosenthal, JS
    [J]. BERNOULLI, 2005, 11 (05) : 815 - 828
  • [10] Machine learning-accelerated gradient-based Markov chain Monte Carlo inversion applied to electrical resistivity tomography
    Aleardi, Mattia
    Vinciguerra, Alessandro
    Stucchi, Eusebio
    Hojat, Azadeh
    [J]. NEAR SURFACE GEOPHYSICS, 2022, 20 (04) : 440 - 461