CHARACTERIZATION OF A CLASS OF TRIANGLE-FREE GRAPHS WITH A CERTAIN ADJACENCY PROPERTY

被引:4
|
作者
ALSPACH, B [1 ]
CHEN, CC [1 ]
HEINRICH, K [1 ]
机构
[1] NATL UNIV SINGAPORE,DEPT MATH,SINGAPORE 0511,SINGAPORE
关键词
D O I
10.1002/jgt.3190150404
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m and n be nonnegative integers. Denote by P(m,n) the set of all triangle-free graphs G such that for any independent m-subset M and any n-subset N of V(G) with M intersect N = empty-set, there exists a unique vertex of G that is adjacent to each vertex in M and nonadjacent to any vertex in N. We prove that if m greater-than-or-equal-to 2 and n greater-than-or-equal-to 1, then P(m,n) = empty-set whenever m less-than-or-equal-to n, and P(m,n) = {K(m,n + 1)} whenever m > n. We also have P(1,1) = {C5} and P(1,n) = empty-set for n greater-than-or-equal-to 2. In the degenerate cases, the class P(0,n) is completely determined, whereas the class P(m,0), which is most interesting, being rich in graphs, is partially determined.
引用
收藏
页码:375 / 388
页数:14
相关论文
共 50 条
  • [41] LONGEST CYCLES IN TRIANGLE-FREE GRAPHS
    AUNG, M
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (02) : 171 - 186
  • [42] A note on triangle-free and bipartite graphs
    Prömel, HJ
    Schickinger, T
    Steger, A
    [J]. DISCRETE MATHEMATICS, 2002, 257 (2-3) : 531 - 540
  • [43] An invariant for minimum triangle-free graphs
    Kruger, Oliver
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 74 : 371 - 388
  • [44] On existentially complete triangle-free graphs
    Shoham Letzter
    Julian Sahasrabudhe
    [J]. Israel Journal of Mathematics, 2020, 236 : 591 - 601
  • [45] The Generation of Maximal Triangle-Free Graphs
    Stephan Brandt
    Gunnar Brinkmann
    Thomas Harmuth
    [J]. Graphs and Combinatorics, 2000, 16 (2) : 149 - 157
  • [46] Coloring triangle-free graphs on surfaces
    Dvorak, Zdenek
    Kral, Daniel
    Thomas, Robin
    [J]. ALGORITHMS AND COMPUTATION, 2007, 4835 : 2 - +
  • [47] The number of the maximal triangle-free graphs
    Balogh, Jozsef
    Petrickova, Sarka
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 1003 - 1006
  • [48] Induced trees in triangle-free graphs
    Matousek, Jiri
    Samal, Robert
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [49] Structure and colour in triangle-free graphs
    Aravind, N. R.
    Cambie, Stijn
    van Batenburg, Wouter Cames
    de Verclos, Remi De Joannis
    Kang, Ross J.
    Patel, Viresh
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [50] THE χ-RAMSEY PROBLEM FOR TRIANGLE-FREE GRAPHS
    Davies, Ewan
    Illingworth, Freddie
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (02) : 1124 - 1134