An invariant for minimum triangle-free graphs

被引:0
|
作者
Kruger, Oliver [1 ]
机构
[1] Stockholm Univ, Dept Math, Stockholm, Sweden
来源
关键词
INDEPENDENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the number of edges, e(G), in triangle-free graphs with a prescribed number of vertices, n(G), independence number, alpha(G), and number of cycles of length 4, N(C-4; G). In particular we show that 3e(G) - 17n(G) + 35 alpha(G) + N(C-4; G) >= 0 for all triangle-free graphs G. We also characterise the graphs that satisfy this inequality with equality. As a consequence we improve the previously best known lower bounds on the independence ratio i(G) = alpha(G)/n(G) for graphs of average degree at most 4 and girth at least 5, 6 or 7.
引用
收藏
页码:371 / 388
页数:18
相关论文
共 50 条
  • [1] MINIMUM TRIANGLE-FREE GRAPHS
    RADZISZOWSKI, SP
    KREHER, DL
    [J]. ARS COMBINATORIA, 1991, 31 : 65 - 92
  • [2] On minimum balanced bipartitions of triangle-free graphs
    Li, Haiyan
    Liang, Yanting
    Liu, Muhuo
    Xu, Baogang
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (03) : 557 - 566
  • [3] On minimum balanced bipartitions of triangle-free graphs
    Haiyan Li
    Yanting Liang
    Muhuo Liu
    Baogang Xu
    [J]. Journal of Combinatorial Optimization, 2014, 27 : 557 - 566
  • [4] On The Structure Of Triangle-Free Graphs Of Large Minimum Degree
    Tomasz Łuczak*
    [J]. Combinatorica, 2006, 26 : 489 - 493
  • [5] Triangle-free subcubic graphs with minimum bipartite density
    Xu, Baogang
    Yu, Xingxing
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (03) : 516 - 537
  • [6] On the structure of triangle-free graphs of large minimum degree
    Luczak, Tomasz
    [J]. COMBINATORICA, 2006, 26 (04) : 489 - 493
  • [7] On the chromatic number of triangle-free graphs of large minimum degree
    Thomassen, C
    [J]. COMBINATORICA, 2002, 22 (04) : 591 - 596
  • [8] On the Chromatic Number of Triangle-Free Graphs of Large Minimum Degree
    Carsten Thomassen
    [J]. Combinatorica, 2002, 22 : 591 - 596
  • [9] Median graphs and triangle-free graphs
    Imrich, W
    Klavzar, S
    Mulder, HM
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (01) : 111 - 118
  • [10] Triangle-free equimatchable graphs
    Buyukcolak, Yasemin
    Ozkan, Sibel
    Gozupek, Didem
    [J]. JOURNAL OF GRAPH THEORY, 2022, 99 (03) : 461 - 484