Induced trees in triangle-free graphs

被引:0
|
作者
Matousek, Jiri
Samal, Robert
机构
[1] Charles Univ Prague, Dept Appl Math, CR-11800 Prague 1, Czech Republic
[2] Charles Univ Prague, Inst Theoret Comp Sci ITI, CR-11800 Prague, Czech Republic
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2008年 / 15卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that every connected triangle-free graph on n vertices contains an induced tree on exp(c root log n) vertices, where c is a positive constant. The best known upper bound is (2 + o(1))root n. This partially answers question of Erdos, Saks and Sos and of Pultr.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Rooted Induced Trees in Triangle-Free Graphs
    Pfender, Florian
    [J]. JOURNAL OF GRAPH THEORY, 2010, 64 (03) : 206 - 209
  • [2] Bipartite induced density in triangle-free graphs
    van Batenburg, Wouter Cames
    de Verclos, Remi de Joannis
    Kang, Ross J.
    Pirot, Francois
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (02): : 1 - 19
  • [3] Maximal Induced Matchings in Triangle-Free Graphs
    Basavaraju, Manu
    Heggernes, Pinar
    van't Hof, Pim
    Saei, Reza
    Villanger, Yngve
    [J]. JOURNAL OF GRAPH THEORY, 2016, 83 (03) : 231 - 250
  • [4] Maximal Induced Matchings in Triangle-Free Graphs
    Basavaraju, Manu
    Heggernes, Pinar
    van 't Hof, Pim
    Saei, Reza
    Villanger, Yngve
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2014, 8747 : 93 - 104
  • [5] On induced colourful paths in triangle-free graphs
    Babu, Jasine
    Basavaraju, Manu
    Chandran, L. Sunil
    Francis, Mathew C.
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 255 : 109 - 116
  • [6] Median graphs and triangle-free graphs
    Imrich, W
    Klavzar, S
    Mulder, HM
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (01) : 111 - 118
  • [7] Triangle-free equimatchable graphs
    Buyukcolak, Yasemin
    Ozkan, Sibel
    Gozupek, Didem
    [J]. JOURNAL OF GRAPH THEORY, 2022, 99 (03) : 461 - 484
  • [8] ON MAXIMAL TRIANGLE-FREE GRAPHS
    ERDOS, P
    HOLZMAN, R
    [J]. JOURNAL OF GRAPH THEORY, 1994, 18 (06) : 585 - 594
  • [9] Triangle-free polyconvex graphs
    Isaksen, DC
    Robinson, B
    [J]. ARS COMBINATORIA, 2002, 64 : 259 - 263
  • [10] On the evolution of triangle-free graphs
    Steger, A
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2005, 14 (1-2): : 211 - 224