ACCURATE SYMPLECTIC INTEGRATORS VIA RANDOM SAMPLING

被引:7
|
作者
HOOVER, WG [1 ]
KUM, O [1 ]
OWENS, NE [1 ]
机构
[1] LAWRENCE LIVERMORE NATL LAB,LIVERMORE,CA 94551
来源
JOURNAL OF CHEMICAL PHYSICS | 1995年 / 103卷 / 04期
关键词
D O I
10.1063/1.469774
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We develop a random-sampling method for finding accurate symplectic integrators which best match the exact trajectory of a one-dimensional harmonic oscillator. We recover several well-known algorithms. We demonstrate the usefulness of the random sampling method by finding and validating a new integrator, applying it to the classical many-body problem. (C) 1994 American Institute of Physics.
引用
收藏
页码:1530 / 1532
页数:3
相关论文
共 50 条
  • [21] A New Symplectic Method for a Linear Stochastic Oscillator via Stochastic Variational Integrators
    Zhang, Jingjing
    Wang, Lijin
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1772 - 1775
  • [22] Physics of symplectic integrators: Perihelion advances and symplectic corrector algorithms
    Chin, Siu A.
    PHYSICAL REVIEW E, 2007, 75 (03):
  • [23] The role of symplectic integrators in optimal control
    Chyba, Monique
    Hairer, Ernst
    Vilmart, Gilles
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2009, 30 (04): : 367 - 382
  • [24] ENERGY CONSERVING, LIOUVILLE, AND SYMPLECTIC INTEGRATORS
    OKUNBOR, DI
    JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 120 (02) : 375 - 378
  • [25] A fundamental theorem on the structure of symplectic integrators
    Chin, Siu A.
    PHYSICS LETTERS A, 2006, 354 (5-6) : 373 - 376
  • [26] Symplectic integrators for the matrix Hill equation
    Bader, Philipp
    Blanes, Sergio
    Ponsoda, Enrique
    Seydaoglu, Muaz
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 316 : 47 - 59
  • [27] SYMPLECTIC INTEGRATORS FOR INDEX 1 CONSTRAINTS
    McLachlan, Robert I.
    Modin, Klas
    Verdier, Olivier
    Wilkins, Matt
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05): : A2150 - A2162
  • [28] BUTCHERS SIMPLIFYING ASSUMPTION FOR SYMPLECTIC INTEGRATORS
    SAITO, S
    SUGIURA, H
    MITSUI, T
    BIT, 1992, 32 (02): : 345 - 349
  • [29] Symplectic integrators with adaptive time steps
    Richardson, A. S.
    Finn, J. M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (01)
  • [30] Dedicated symplectic integrators for rotation motions
    Laskar, Jacques
    Vaillant, Timothee
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2019, 131 (03):