ACCURATE SYMPLECTIC INTEGRATORS VIA RANDOM SAMPLING

被引:7
|
作者
HOOVER, WG [1 ]
KUM, O [1 ]
OWENS, NE [1 ]
机构
[1] LAWRENCE LIVERMORE NATL LAB,LIVERMORE,CA 94551
来源
JOURNAL OF CHEMICAL PHYSICS | 1995年 / 103卷 / 04期
关键词
D O I
10.1063/1.469774
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We develop a random-sampling method for finding accurate symplectic integrators which best match the exact trajectory of a one-dimensional harmonic oscillator. We recover several well-known algorithms. We demonstrate the usefulness of the random sampling method by finding and validating a new integrator, applying it to the classical many-body problem. (C) 1994 American Institute of Physics.
引用
收藏
页码:1530 / 1532
页数:3
相关论文
共 50 条
  • [41] Tuning Symplectic Integrators is Easy and Worthwhile
    McLachlan, Robert I.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 31 (03) : 987 - 996
  • [42] A COMPARISON OF THE SYMPLECTIC AND OTHER NUMERICAL INTEGRATORS
    BROUCKE, RA
    STOCHASTIC PROCESSES IN ASTROPHYSICS, 1993, 706 : 126 - 147
  • [43] Symplectic integrators: Rotations and roundoff errors
    Petit, JM
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1998, 70 (01): : 1 - 21
  • [44] Hybrid symplectic integrators for planetary dynamics
    Rein, Hanno
    Hernandez, David M.
    Tamayo, Daniel
    Brown, Garett
    Eckels, Emily
    Holmes, Emma
    Lau, Michelle
    Leblanc, Rejean
    Silburt, Ari
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 485 (04) : 5490 - 5497
  • [45] Existence of formal integrals of symplectic integrators
    Liao, XH
    Liu, L
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1995, 63 (01): : 113 - 123
  • [46] The canonical ensemble via symplectic integrators using Nose and Nose-Poincare chains
    Leimkuhler, BJ
    Sweet, CR
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (01): : 108 - 116
  • [48] Symplectic integrators for the numerical solution of the Schrodinger equation
    Kalogiratou, Z
    Monovasilis, T
    Simos, TE
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (01) : 83 - 92
  • [49] Global modified Hamiltonian for constrained symplectic integrators
    Ernst Hairer
    Numerische Mathematik, 2003, 95 : 325 - 336
  • [50] Holomorphic potentials, symplectic integrators and CMC surfaces
    Lerner, D
    Sterling, I
    ELLIPTIC AND PARABOLIC METHODS IN GEOMETRY, 1996, : 73 - 90