ON THE ROOTS OF ORTHOGONAL POLYNOMIALS AND EULER-FROBENIUS POLYNOMIALS

被引:6
|
作者
DUBEAU, F [1 ]
SAVOIE, J [1 ]
机构
[1] COLL MIL ROYAL ST JEAN,DEPT MATH,RICHELIEU,PQ J0J 1R0,CANADA
关键词
D O I
10.1006/jmaa.1995.1399
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Interlacing properties of the roots of the polynomials P-n(x) and P-n+1(x) and P-n(x) and P-n+2(x) are obtained for sequences of polynomials generated recursively by the scheme: P-0(x) = x(l) (l a nonnegative integer) and c(n+1)/P-n+1(x) = -2r(n)xP(n)(x) + (1 - x(2))DPn(x). Ultraspherical polynomials and Euler-Frobenius polynomials are examples of such sequences. We obtain similar results for Hermite like polynomials obtained by the scheme: H-0(x) = x(l) (l a nonnegative integer) and H-n+1(x) = -2xH(n)(x) + DHn(x). (C) 1995 Academic Press, Inc.
引用
收藏
页码:84 / 98
页数:15
相关论文
共 50 条
  • [41] Some new formulas for the products of the Frobenius-Euler polynomials
    Su, Dan-Dan
    He, Yuan
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [42] STRUCTURE OF THE ROOTS OF (h, q)-EULER POLYNOMIALS
    Ryoo, C. S.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (03) : 458 - 465
  • [43] On the roots of the twisted (h, q)-Euler polynomials
    Ryoo, Cheon Seoung
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2010, 12 (01) : 141 - 147
  • [44] Some new formulas for the products of the Frobenius-Euler polynomials
    Dan-Dan Su
    Yuan He
    Advances in Difference Equations, 2017
  • [45] Properties and applications of the Gould-Hopper-Frobenius-Euler polynomials
    Wani, Shahid Ahmad
    Khan, Subuhi
    TBILISI MATHEMATICAL JOURNAL, 2019, 12 (01) : 93 - 104
  • [46] Truncated-exponential-based Frobenius-Euler polynomials
    Kumam, Wiyada
    Srivastava, Hari Mohan
    Wani, Shahid Ahmad
    Araci, Serkan
    Kumam, Poom
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [47] Some new identities of Frobenius-Euler numbers and polynomials
    Dae San Kim
    Taekyun Kim
    Journal of Inequalities and Applications, 2012
  • [48] Differential and integrodifferential equations for Gould–Hopper–Frobenius–Euler polynomials
    Shabir Ahmad Mir
    K. S. Nisar
    Tawheeda Akhter
    Serkan Araci
    Mathematical Sciences, 2023, 17 : 247 - 251
  • [49] COMPUTING THE ROOTS OF COMPLEX ORTHOGONAL AND KERNEL POLYNOMIALS
    SAYLOR, PE
    SMOLARSKI, DC
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (01): : 1 - 13
  • [50] A general equidistribution theorem for the roots of orthogonal polynomials
    Tyrtyshnikov, EE
    Zamarashkin, NL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 366 : 433 - 439